Search for dark matter through Stark effect measurement with Rydberg atoms in microwave cavities

J. Gué, A. Hees, R. Le Targat, J. Lodewyck, P. Wolf

SYRTE
SYstèmes Références Temps-Espace, CNRS, Observatoire de Paris, Université PSL, Sorbonne Université, LNE

ACES Workshop, Paris
October 20th 2022
Why do we need Dark Matter?

Explains astrophysical observations at different scales:

- **Galactic scale** (velocity rotation curves, weak lensing, ...)
- **Galactic cluster scale** (bullet cluster, strong lensing, ...)
- **Cosmological scale** (CMB, structure formation, ...)

Equation: $\Omega_M \approx 0.259$
Classes of DM

Fig. 1 from US cosmic vision: new idea for Dark Matter 2017, Arxiv:1707:04951
Ultralight Dark Matter (ULDM) models

\[
\frac{n}{n_k} \sim \frac{6\pi^2 \hbar^3}{c^2 m^4 \nu_{\text{max}}^3} \rho_{\text{DM}} \sim \frac{0.3 \text{ GeV/cm}^3}{10^{-3}c}
\]

\[< 10 \text{ eV}\]

\[\Rightarrow \text{ULDM (with } m < 10 \text{ eV) has to be bosonic (Pauli exclusion principle)} \]

• When \(m \ll eV \rightarrow \frac{n}{n_k} \gg 1 \rightarrow \text{the field can be treated classically.}\)

• We classify the different ULDM models from their nature

 ➢ Scalar field (Dilatons,...)
 ➢ Pseudo-scalar field (Axions,...)
 ➢ Vector field (Dark photons (DP),...)

Inspired from Tourrenc et al, Arxiv:quantum-ph/0407187, 2004
Does DP induce oscillating electric field?

- Cosmologically, DP field oscillates at its Compton frequency $\phi = \phi_0 \cos \omega t$
 \[\omega = m (k = 0) \]

- DP lagrangian given by
 \[\mathcal{L} = -\frac{1}{4} \phi^{\mu\nu} \phi_{\mu\nu} - \frac{1}{2} m^2 \phi_{\mu} \phi^{\mu} - \frac{\chi}{2} F_{\mu\nu} \phi^{\mu\nu} \]

- The mixing term generates a standard electric field filling the whole space
 \[\vec{E}_{DP} \approx -i \chi \omega \vec{\phi} e^{-i\omega t} \]
 which we would like to detect! Or, constrain χ on a given range of DP masses.

- Additionally, if DP field accounts for the whole DM, $|\vec{E}_{DP}| = \chi \sqrt{2 \rho_{DM}}$
Resonant cavity and why using it in this context?

- Microwave cavity: Resonator confining EM signal with frequencies in the microwave range \(\mathcal{O}(\text{GHz}) \)

- In real cavities, loss of energy characterized by **quality factor, Q**. The larger Q is, the higher electric field amplitude will be inside the cavity.

- In the context of DP, \(\vec{E}_{DP} \) acts as another initial wave which might enter in resonance.
The experiment: Setup using microwave signal
We can **either** measure the DM electric field directly...

\[\vec{E}_T \propto \vec{X}_{DM} e^{-i\omega_{DM} t} \]

- Oscillate too fast \((\mathcal{O}(GHz))\)
- Amplitude too small \((\mathcal{O}(\chi))\)
We can either measure the DM electric field directly...

\[\vec{E}_T \propto X_{DM} e^{-i\omega_{DM} t} \]

→ Oscillate too fast \((\mathcal{O}(GHz))\)

→ Amplitude too small \((\mathcal{O}(\chi))\)

...or apply an external field and measure the square of the total electric field

\[|\vec{E}_T|^2 \propto X_a X_{DM}[\cos(\Delta \omega t + \phi_a) + \cos(\Sigma \omega t + \phi_a)] + X_{DM}^2 \cos(2\omega_{DM} t) + X_a^2 \cos(2\omega_a t + \phi_a) \]

Oscillation too fast/Amplitude too small
The experiment: Setup using microwave signal

We can either measure the DM electric field directly...

\[\vec{E}_T \propto \vec{X}_{DM} e^{-i\omega_{DM} t} \]

→ Oscillate too fast (\(O(GHz)\))
→ Amplitude too small (\(O(\chi)\))

...or apply an external field and measure the square of the total electric field

The DM frequency we look for is such that \(\Delta \omega < f_s\), sampling frequency of the apparatus

In addition, we take advantage of the possible high injected power contained in \(\vec{X}_{a}\)
The experiment: Detection using Rydberg atoms

Best way of measuring the square of the electric field strength is through Stark effect

\[\Delta v = \frac{1}{2h} \Delta \alpha \langle E \rangle^2 \]

- Measurement of transition frequency of an atom and look for
 \[\nu(t) = \nu_0 + \Delta v \cos(\Delta \omega t + \phi_a) \]

With Rydberg atoms:
- High accuracy on \(\Delta \nu \) from \(\langle E \rangle^2 \)
- Large polarizability \(\Delta \alpha \)
- Good resolution on \(\langle E \rangle^2 \) (with small \(T_{\text{obs}} \))

\[\rightarrow \text{Better sensitivity to} \ \langle E \rangle^2 \]

Fig. 4: Atoms at the center of the cavity to measure the Stark effect induced by \(\langle E_T \rangle^2 \)
The experiment : Experimental methodology

1) Apply electric field with initial frequency ω_a during T_{obs}

→ scan possible DM signals with $\Delta \omega < f_s$

2) Shift applied frequency by 2×10^5 Hz for another T_{obs}

→ Large window of DM masses scanable ($= 2Nf_s$)
Rough estimation of the experiment’s sensitivity

Statistical noise: Measurement uncertainty of the electric field squared from the atoms.

- Minimal detectable field power $\langle E_{\text{min}} \rangle^2 = 1 \, (\text{V/m})^2$
- $\chi(\omega_{DM}) = f(Q, X_a, X_{DM}, ...)$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Microwave cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality factor Q</td>
<td>10^4</td>
</tr>
<tr>
<td>Cavity length</td>
<td>10 cm</td>
</tr>
<tr>
<td>Injected power</td>
<td>1 W</td>
</tr>
<tr>
<td>Effective mode radius</td>
<td>$\mathcal{O}(\text{cm})$</td>
</tr>
<tr>
<td>$\langle E_{\text{min}} \rangle^2$</td>
<td>1 (V/m)2</td>
</tr>
<tr>
<td>Number of atoms N_a</td>
<td>10^4</td>
</tr>
<tr>
<td>Range of ω_a</td>
<td>[7, 12] GHz</td>
</tr>
<tr>
<td>Range of $\Delta \omega$</td>
<td>$[1, 10^5]$ Hz</td>
</tr>
</tbody>
</table>
Rough estimation of the experiment’s sensitivity

Statistical noise: Measurement uncertainty of the electric field squared from the atoms.

→ Minimal detectable field power \(\langle E_{\text{min}} \rangle^2 = 1 \text{ (V/m)}^2 \)

→ \(\chi(\omega_{\text{DM}}) = f(Q, X_a, X_{\text{DM}}, \ldots) \)

<table>
<thead>
<tr>
<th>Microwave cavity</th>
<th>Quality factor Q</th>
<th>10^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity length</td>
<td>10 cm</td>
<td></td>
</tr>
<tr>
<td>Injected power</td>
<td>1 W</td>
<td></td>
</tr>
<tr>
<td>Effective mode radius</td>
<td>(\mathcal{O}(cm))</td>
<td></td>
</tr>
<tr>
<td>(\langle E_{\text{min}} \rangle^2)</td>
<td>1 (\text{(V/m)}^2)</td>
<td></td>
</tr>
<tr>
<td>Number of atoms (N_a)</td>
<td>10^4</td>
<td></td>
</tr>
<tr>
<td>Range of (\omega_a)</td>
<td>[7, 12] GHz</td>
<td></td>
</tr>
<tr>
<td>Range of (\Delta \omega)</td>
<td>[1, 10^5] Hz</td>
<td></td>
</tr>
</tbody>
</table>

From C. O’Hare : https://github.com/cajohare
Rough estimation of the experiment’s sensitivity

Statistical noise: Measurement uncertainty of the electric field squared from the atoms.

→ Minimal detectable field power $\langle E_{\text{min}} \rangle^2 = 1 \text{ (V/m)}^2$

→ $\chi(\omega_{DM}) = f(Q, X_a, X_{DM}, \ldots)$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality factor Q</td>
<td>10^4</td>
</tr>
<tr>
<td>Cavity length</td>
<td>10 cm</td>
</tr>
<tr>
<td>Injected power</td>
<td>1 W</td>
</tr>
<tr>
<td>Effective mode radius</td>
<td>$\mathcal{O}(\text{cm})$</td>
</tr>
<tr>
<td>$\langle E_{\text{min}} \rangle^2$</td>
<td>1 (V/m)2</td>
</tr>
<tr>
<td>Number of atoms N_a</td>
<td>10^4</td>
</tr>
<tr>
<td>Range of ω_a</td>
<td>[7, 12] GHz</td>
</tr>
<tr>
<td>Range of $\Delta \omega$</td>
<td>[1, 10^5] Hz</td>
</tr>
</tbody>
</table>

From C. O’Hare: https://github.com/cajohare
Rough estimation of the experiment’s sensitivity

Statistical noise: Measurement uncertainty of the electric field squared from the atoms.

→ Minimal detectable field power $\langle E_{\text{min}} \rangle^2 = 1 \,(V/m)^2$

→ $\chi(\omega_{DM}) = f(Q, X_a, X_{DM}, ...)$

From C. O’Hare: https://github.com/cajohare

Fig. 6: Constraint on χ obtained with this setup. The exclusion plot on the right shows only lab experiments and omit cosmological ones such as CMB.
Rough estimation of the experiment’s sensitivity

Systematic noise: RIN (Relative Intensity Noise) of a signal describes the fluctuation of its power.

\[\Delta \dot{X}_B X_B = RIN = \sqrt{\frac{2S_{RIN}}{T_{obs}}} \]

Close to resonances, the applied field amplitude is enhanced a lot (with its fluctuation)

\[\Rightarrow \] The experimental limit becomes the systematic effect and

\[\chi \approx \frac{\Delta X_a}{X_a} \]

No dependence on Q or any other cavity parameters.

\[\Rightarrow \downarrow S_{RIN} \text{ or } \uparrow T_{obs} \Rightarrow \text{Better constraint on } \chi \]
Rough estimation of the experiment’s sensitivity
Rough estimation of the experiment’s sensitivity
Rough estimation of the experiment’s sensitivity

$\rho_{DM} = 0.45 \text{ GeV cm}^{-3}$

Dark photon mass, m_X [eV]
Rough estimation of the experiment’s sensitivity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality factor Q</td>
<td>10^4</td>
</tr>
<tr>
<td>Cavity length</td>
<td>10 cm</td>
</tr>
<tr>
<td>Injected power</td>
<td>1 W</td>
</tr>
<tr>
<td>Effective mode radius</td>
<td>$O(\text{cm})$</td>
</tr>
<tr>
<td>$(E_{\text{min}})^2$</td>
<td>1 (V/m)^2</td>
</tr>
<tr>
<td>Number of atoms N_a</td>
<td>10^4</td>
</tr>
<tr>
<td>Range of ω_a</td>
<td>$[7, 12] \text{ GHz}$</td>
</tr>
<tr>
<td>Range of $\Delta \omega$</td>
<td>$[1, 10^5] \text{ Hz}$</td>
</tr>
<tr>
<td>T_{obs}</td>
<td>600 s</td>
</tr>
<tr>
<td>$S_{RIN}(\omega)$</td>
<td>$10^{-13}/\omega$</td>
</tr>
</tbody>
</table>
Rough estimation of the experiment’s sensitivity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality factor Q</td>
<td>10^4</td>
</tr>
<tr>
<td>Cavity length</td>
<td>10 cm</td>
</tr>
<tr>
<td>Injected power</td>
<td>1 W</td>
</tr>
<tr>
<td>Effective mode radius</td>
<td>$O(cm)$</td>
</tr>
<tr>
<td>$(E_{\text{min}})^2$</td>
<td>$1 \ (V/m)^2$</td>
</tr>
<tr>
<td>Number of atoms N_a</td>
<td>10^4</td>
</tr>
<tr>
<td>Range of ω_a</td>
<td>[7, 12] GHz</td>
</tr>
<tr>
<td>Range of $\Delta \omega$</td>
<td>$[1, 10^5]$ Hz</td>
</tr>
<tr>
<td>T_{obs}</td>
<td>600 s</td>
</tr>
<tr>
<td>$S_{RIN}(\omega)$</td>
<td>$10^{-13}/\omega$</td>
</tr>
</tbody>
</table>
Rough estimation of the experiment’s sensitivity

Without systematics

\[\rho_{DM} = 0.45 \text{ GeV cm}^{-3} \]

Kinetic mixing, \(\chi \)

Dark E-field

Frequency [GHz]

<table>
<thead>
<tr>
<th>Quality factor Q</th>
<th>Microwave cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity length</td>
<td>10 cm</td>
</tr>
<tr>
<td>Injected power</td>
<td>1 W</td>
</tr>
<tr>
<td>Effective mode radius</td>
<td>(O(\text{cm}))</td>
</tr>
<tr>
<td>((E_{min})^2)</td>
<td>1 ((\text{V/m})^2)</td>
</tr>
<tr>
<td>Number of atoms (N_a)</td>
<td>10^4</td>
</tr>
<tr>
<td>Range of (\omega_a)</td>
<td>[7, 12] GHz</td>
</tr>
<tr>
<td>Range of (\Delta \omega)</td>
<td>[1, 10^5] Hz</td>
</tr>
<tr>
<td>(T_{obs})</td>
<td>600 s</td>
</tr>
<tr>
<td>(S_{RIN}(\omega))</td>
<td>(10^{-13}/\omega)</td>
</tr>
</tbody>
</table>

Dark photon mass, \(m_X \) [eV]

Kinetic mixing, \(\chi \)

\[\rho_{DM} = 0.45 \text{ GeV cm}^{-3} \]

Frequency [GHz]

Dark photon mass, \(m_X \) [eV]

Without systematics
Rough estimation of the experiment’s sensitivity

Table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality factor Q</td>
<td>10^4</td>
</tr>
<tr>
<td>Cavity length</td>
<td>10 cm</td>
</tr>
<tr>
<td>Injected power</td>
<td>1 W</td>
</tr>
<tr>
<td>Effective mode radius</td>
<td>$\mathcal{O}(cm)$</td>
</tr>
<tr>
<td>$(E_{\text{min}})^2$</td>
<td>1 (V/m)^2</td>
</tr>
<tr>
<td>Number of atoms N_a</td>
<td>10^4</td>
</tr>
<tr>
<td>Range of ω_a</td>
<td>[7, 12] GHz</td>
</tr>
<tr>
<td>Range of $\Delta \omega$</td>
<td>[1, 10^5] Hz</td>
</tr>
<tr>
<td>T_{obs}</td>
<td>600 s</td>
</tr>
<tr>
<td>$S_{\text{RIN}}(\omega)$</td>
<td>$10^{-13}/\omega$</td>
</tr>
</tbody>
</table>

Graph:

- Frequency [GHz]
- Kinetic mixing, χ
- Dark photon mass, m_X [eV]
- Dark E-field
- $\rho_{\text{DM}} = 0.45 \text{ GeV cm}^{-3}$
Rough estimation of the experiment’s sensitivity

Fig. 7: Constraint on \(\chi \) obtained with this setup for \(T_{\text{obs}} = 600 \) s, \(S_{\text{RIN}} = 10^{-13}/\omega \)

<table>
<thead>
<tr>
<th>Quality factor Q</th>
<th>Microwave cavity</th>
<th>10^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity length</td>
<td>10 cm</td>
<td></td>
</tr>
<tr>
<td>Injected power</td>
<td>1 W</td>
<td></td>
</tr>
<tr>
<td>Effective mode radius</td>
<td>(O(\text{cm}))</td>
<td></td>
</tr>
<tr>
<td>((E_{\text{min}})^2)</td>
<td>(1) (V/m)^2</td>
<td></td>
</tr>
<tr>
<td>Number of atoms (N_a)</td>
<td>(10^4)</td>
<td></td>
</tr>
<tr>
<td>Range of (\omega_a)</td>
<td>[7, 12] GHz</td>
<td></td>
</tr>
<tr>
<td>Range of (\Delta \omega)</td>
<td>[1, 10^5] Hz</td>
<td></td>
</tr>
<tr>
<td>(T_{\text{obs}})</td>
<td>600 s</td>
<td></td>
</tr>
<tr>
<td>(S_{\text{RIN}}(\omega))</td>
<td>(10^{-13}/\omega)</td>
<td></td>
</tr>
</tbody>
</table>
Rough estimation of the experiment’s sensitivity

→ Not dramatic change in sensitivity
→ Need to consider $T_{\text{obs}} = 600$ s

Fig. 7: Constraint on χ obtained with this setup for $T_{\text{obs}} = 600$ s, $S_{RIN} = 10^{-13}/\omega$
Rough estimation of the experiment’s sensitivity

Not dramatic change in sensitivity
Need to consider $T_{\text{obs}} = 600$ s

$\text{Nb of times we switch } \omega_a$

Total experiment time $T_{\text{tot}} = NT_{\text{obs}}$
$T_{\text{tot}} \sim 1 \text{ month} \equiv \text{scan DM masses } \in [5.9; 6.5] \mu eV$

<table>
<thead>
<tr>
<th>Quality factor Q</th>
<th>10^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity length</td>
<td>10 cm</td>
</tr>
<tr>
<td>Injected power</td>
<td>1 W</td>
</tr>
<tr>
<td>Effective mode radius</td>
<td>$O(\text{cm})$</td>
</tr>
<tr>
<td>$(E_{\text{min}})^2$</td>
<td>1 (V/m)^2</td>
</tr>
<tr>
<td>Number of atoms N_a</td>
<td>10^4</td>
</tr>
<tr>
<td>Range of ω_a</td>
<td>[7, 12] GHz</td>
</tr>
<tr>
<td>Range of $\Delta \omega$</td>
<td>$[1, 10^5]$ Hz</td>
</tr>
<tr>
<td>T_{obs}</td>
<td>600 s</td>
</tr>
<tr>
<td>$S_{RIN}(\omega)$</td>
<td>$10^{-13}/\omega$</td>
</tr>
</tbody>
</table>

Fig. 7: Constraint on χ obtained with this setup for $T_{\text{obs}} = 600$ s, $S_{RIN} = 10^{-13}/\omega$
Rough estimation of the experiment’s sensitivity

\[\rho_{DM} = 0.45 \text{ GeV cm}^{-3} \]

\[\omega_a \]

\[m_X \text{ [eV]} \]

\[N \text{ [times]} \]

\[T_{obs} = 600 \text{ s} \]

\[T_{tot} \sim 1 \text{ month} \equiv \text{scan DM masses } \in [5.9; 6.5] \text{ } \mu \text{eV} \]

Total experiment time \(T_{tot} = NT_{obs} \)

Quality factor \(Q \)

Cavity length \(10^4 \) cm

Injected power \(1 \text{ W} \)

Effective mode radius \(O(\text{cm}) \)

\((E_{\text{min}})^2 \text{ [V/m]}^2 \)

Range of \(\omega_a \) [7, 12] GHz

Range of \(\Delta \omega \) [1, 10^5] Hz

\(T_{obs} = 600 \text{ s} \)

\(S_{RIN}(\omega) = 10^{-13}/\omega \)

Fig. 7: Constraint on \(\chi \) obtained with this setup for \(T_{obs} = 600 \text{ s} \), \(S_{RIN} = 10^{-13}/\omega \)
Conclusion

- **DP is a serious DM candidate → numerous lab experiments trying to detect it.**
- **Proposal of a new kind of experiment looking for DP using atoms inside a microwave cavity.** As a resonant device, it acts as a narrow band DM detector.
- With the current technology in quantum optics, **competitive constraints on the coupling constant \(\chi \)** compared to other lab experiments.

Next step: How to mitigate the experimental limiting factor, the systematic effect?
Thank you for your attention!
Back-up: Cavity parameters

- Resonance conditions: \(\lambda = \frac{2L}{n} \) or \(kL = n\pi \)

- Detection at the center from atoms \(\rightarrow \) we require \(n \) odd (antinode at the center)

- Reflectivity coeff of mirrors \(r \) is related to quality factor as
 \[Q = \frac{2\pi}{\lambda(1 - r^2)} \]

 This relation is valid only around resonances.

- Finesse of a cavity defined as
 \[F = 2\pi N_e \rightarrow F \approx Q \]
Atoms inside a cavity, excited by a laser.
The closer the frequency of the laser is to the energy difference between the 2 levels, the more excited atoms there will be

→ Assessment of the frequency of the laser to be closest possible to the energy difference.
→ Wave with appropriate frequency and need to count oscillations to give time
Back-up: How does Q impact the sensitivity?

\[Q = 10^6 \]

\[Q = 10^4 \]

\[\rho_{DM} = 0.45 \text{ GeV cm}^{-3} \]

Frequency [GHz]

Without systematics

Kinetic mixing, χ

Dark photon mass, m_X [eV]
Back-up: why microwave cavity and not optical?

1. $\vec{E}_{DP} \approx -i\chi\omega \phi e^{-i\omega t}$ valid if we neglect k.

To do so, we require $L \ll \lambda$ (L, size of experiment considered (< 10 cm))
\rightarrow ok in microwave range
\rightarrow in optical range, $k \sim 10^6$ m$^{-1} \gg \frac{2\pi}{\lambda}$

2. Optical frequency \equiv eV mass
\rightarrow QFT required for DP field
Back-up : DP cosmo evolution + field equations

• Free Klein-Gordon equation (in expanding universe) of each DP space component ϕ^i

\[
\ddot{\phi}^i + 3H\dot{\phi}^i + m^2 \phi^i \approx 0
\]

whose solution is oscillatory.

Nelson, Scholtz, PRD, 2011

• Additionally, $p_{ij} \sim \langle T_{ij} \rangle = 0$ and the field behaves as pressureless fluid or CDM

• In the microwave regime and considering $\nu_{DM} \sim 10^{-3}$ in Earth’s frame, the DP field can be approximated by a standing wave in a cavity of length $L \sim 10$ cm. Then,

$$\omega = m; \phi^0 = 0$$

• The DP mixes with the SM photon as

$$\partial_\mu \partial^\mu A^\nu = -\chi \phi^\nu$$

$$(\partial_\mu \partial^\mu + m^2) \phi^\nu = -\chi \partial_\mu \partial^\mu A^\nu$$
Back-up: Systematic noise and Data analysis

$\sqrt{S_{RIN}}$ of a Nd laser, measurement provided by Artemis lab.

$\sqrt{S_{RIN}}$ of different sources (arXiv: Rubiola, 2005)

AM noise of some sources

<table>
<thead>
<tr>
<th>source</th>
<th>I_{h-1} (flicker)</th>
<th>$[\sigma_{\alpha}]_{\text{floor}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anritsu MG3690A synthesizer (10 GHz)</td>
<td>2.5×10^{-11}</td>
<td>-106.0 dB</td>
</tr>
<tr>
<td>Marconi synthesizer (5 GHz)</td>
<td>1.1×10^{-12}</td>
<td>-119.6 dB</td>
</tr>
<tr>
<td>Macom PLX 32-18 0.1 \rightarrow 9.9 GHz multipl.</td>
<td>1.0×10^{-12}</td>
<td>-120.0 dB</td>
</tr>
</tbody>
</table>