

Search for dark matter through Stark effect measurement with Rydberg atoms in microwave cavities

J. Gué, A. Hees, R. Le Targat, J. Lodewyck, P. Wolf

SYRTE

SYstèmes Références Temps-Espace, CNRS, Observatoire de Paris, Université PSL, Sorbonne Université, LNE

ACES Workshop, Paris October 20th 2022

Systèmes de Référence Temps-Espace

Why do we need Dark Matter ?

Explains astrophysical observations at different scales :

Classes of DM

Fig. 1 from US cosmic vision : new idea for Dark Matter 2017, Arxiv:1707:04951

Ultralight Dark Matter (ULDM) models

 \rightarrow ULDM (with $m < 10 \ eV$) has to be <u>bosonic</u> (Pauli exclusion principle)

- When $m \ll eV \rightarrow \frac{n}{n_k} \gg 1 \rightarrow$ the field can be treated **classically**.
- We classify the different ULDM models from their *nature*
 - Scalar field (Dilatons,...)
 - Pseudo-scalar field (Axions,...)
 - Vector field (Dark photons (DP),...)

Does DP induce oscillating electric field ?

• Cosmologically, DP field oscillates at its Compton frequency $\vec{\phi} = \vec{\phi}_0 \cos \omega t$

• The mixing term generates a standard electric field filling the whole space

$$\vec{E}_{DP} \approx -i\chi\omega\vec{\phi}e^{-i\omega t}$$

which we would like to detect ! Or, constrain χ on a given range of DP masses.

• Additionally, if DP field accounts for the whole DM, $|\vec{E}_{DP}| = \chi \sqrt{2\rho_{DM}}$

Resonant cavity and why using it in this context ?

• Microwave cavity : Resonator confining EM signal with frequencies in the microwave range $(\mathcal{O}(GHz))$

- In real cavities, loss of energy characterized by quality factor, Q.
- The larger Q is, the higher electric field amplitude will be inside the cavity \rightarrow Q is the amplitude amplification factor
- In the context of DP, \vec{E}_{DP} acts as another initial wave which might enter in resonance.

We can **either** measure the DM electric field directly...

$$\vec{E}_T \propto \vec{X}_{DM} e^{-i\omega_{DM}t}$$

DM field contrib. (small)

- → Oscillate too fast ($\mathcal{O}(GHz)$)
- → Amplitude too small ($\mathcal{O}(\chi)$)

We can **either** measure the DM electric field directly...

- → Oscillate too fast ($\mathcal{O}(GHz)$)
- → Amplitude too small ($\mathcal{O}(\chi)$)

We can **either** measure the DM electric field directly...

- → Oscillate too fast ($\mathcal{O}(GHz)$)
- → Amplitude too small $(\mathcal{O}(\chi))$

 \rightarrow The DM frequency we look for is such that $\Delta \omega < f_s$, sampling frequency of the apparatus \rightarrow In addition, we take advantage of the possible high injected power contained in \vec{X}_a

The experiment : Detection using Rydberg atoms

Best way of measuring the square of the electric field strength is through **Stark effect**

$$\Delta \nu = rac{1}{2h} \Delta lpha \langle E
angle^2$$

 \rightarrow Measurement of transition frequency of an atom and look for $v(t) = v_0 + \Delta v \cos(\Delta \omega t + \phi_a)$

The experiment : Experimental methodology

Allowed interval for ω_{DM}

 $\Delta \omega = 10^5 Hz \Delta \omega = 10^5 Hz$

 ω_{a}

fs

1) Apply electric field with initial frequency ω_a during T_{obs} \rightarrow scan possible DM signals with $\Delta \omega < f_s$

> Fig. 5 : Allowed interval for ω_{DM} for a given applied frequency ω_a

2) Shift applied frequency by 2×10^5 Hz for another T_{obs}

 \rightarrow Large window of DM masses scanable (= 2Nf_s)

N times

 ω (Hz)

Statistical noise: Measurement uncertainty of the electric field squared from the atoms.

- → Minimal detectable field power $\langle E_{min} \rangle^2 = 1 (V/m)^2$
- $\rightarrow \chi(\omega_{DM}) = f(Q, X_a, X_{DM}, \dots)$

	Microwave cavity			
Quality factor Q	10^{4}			
Cavity length	10 cm			
Injected power	1 W			
Effective mode radius	$\mathcal{O}(cm)$			
$\langle E_{min} \rangle^2$	$1 (V/m)^2$			
Number of atoms N_a	10^{4}			
Range of ω_a	[7, 12] GHz			
Range of $\Delta \omega$	$[1, 10^5] \text{ Hz}$			

Statistical noise: Measurement uncertainty of the electric field squared from the atoms.

→ Minimal detectable field power $\langle E_{min} \rangle^2 = 1 (V/m)^2$

	Microwave cavity		
Quality factor Q	10^{4}		
Cavity length	10 cm		
Injected power	1 W		
Effective mode radius	$\mathcal{O}(cm)$		
$\langle E_{min} \rangle^2$	$1 (V/m)^2$		
Number of atoms N_a	10^{4}		
Range of ω_a	[7, 12] GHz		
Range of $\Delta \omega$	$[1, 10^5] \text{ Hz}$		

Statistical noise: Measurement uncertainty of the electric field squared from the atoms.

→ Minimal detectable field power $\langle E_{min} \rangle^2 = 1 (V/m)^2$

Microwave cavity

 10^{4}

Quality factor Q

Microwave cavity

 10^{4}

Quality factor Q

Statistical noise: Measurement uncertainty of the electric field squared from the atoms.

→ Minimal detectable field power $\langle E_{min} \rangle^2 = 1 (V/m)^2$

Systematic noise: RIN (Relative Intensity Noise) of a signal describes the fluctuation of its power.

$$\Rightarrow \vec{E}_T = A(\vec{X}_{DM}, \omega_{DM})e^{-i\omega_{DM}t} + B(\vec{X}_a, \omega_a)e^{-i\omega_a t} + \text{syst. noise} \leftarrow \propto \Delta \vec{X}_a$$
$$\frac{\Delta X_a}{X_a} = RIN = \sqrt{\frac{2S_{RIN}}{T_{obs}}}$$

Close to resonances, the applied field amplitude is enhanced a lot (with its fluctuation) \rightarrow The experimental limit becomes the systematic effect and

$$\chi \approx \frac{\Delta X_a}{X_a}$$

No dependence on Q or any other cavity parameters.

 $\Rightarrow \Im S_{RIN} \text{ or } \nearrow T_{obs} \Rightarrow Better constraint on <math>\chi$

	Microwave cavity			
Quality factor Q	10^{4}			
Cavity length	10 cm			
Injected power	1 W			
Effective mode radius	$\mathcal{O}(cm)$			
$\langle E_{min} \rangle^2$	$1 (V/m)^2$			
Number of atoms N_a	10^{4}			
Range of ω_a	$[7, 12] \mathrm{~GHz}$			
Range of $\Delta \omega$	$[1, 10^5] \text{ Hz}$			
T_{obs}	600 s			
$S_{RIN}(\omega)$	$10^{-13}/\omega$			

	Microwave cavity			
Quality factor Q	10^{4}			
Cavity length	10 cm			
Injected power	1 W			
Effective mode radius	$\mathcal{O}(cm)$			
$\langle E_{min} \rangle^2$	$1 (V/m)^2$			
Number of atoms N_a	10^{4}			
Range of ω_a	[7, 12] GHz			
Range of $\Delta \omega$	$[1, 10^5] \text{ Hz}$			
T_{obs}	600 s			
$S_{RIN}(\omega)$	$10^{-13}/\omega$			

12

Conclusion

- DP is a serious DM candidate \rightarrow numerous lab experiments trying to detect it.
- Proposal of a new kind of experiment looking for DP using atoms inside a microwave cavity. As a resonant device, it acts as a narrow band DM detector.
- With the current technology in quantum optics, competitive constraints on the coupling constant χ compared to other lab experiments.

Next step : How to mitigate the experimental limiting factor, the systematic effect?

Thank you for your attention !

Back-up : Cavity parameters

- Resonance conditions : $\lambda = \frac{2L}{n}$ or $kL = n\pi$
- Detection at the center from atoms \rightarrow we require n odd (antinode at the center)
- Reflectivity coeff of mirrors r is related to quality factor as 2π

$$Q = \frac{1}{\lambda(1-r^2)}$$

This relation is valid only around resonances.

• Finesse of a cavity defined as

$$\mathcal{F} = 2\pi N_e \to \mathcal{F} \approx Q$$

Back-up : Atomic clock

From http://hyperphysics.phy-astr.gsu.edu

Atoms inside a cavity, excited by a laser.

The closer the frequency of the laser is to the energy difference between the 2 levels, the more excited atoms there will be

- \rightarrow Assessment of the frequency of the laser to be closest possible to the energy difference.
- \rightarrow Wave with appropriate frequency and need to count oscillations to give time

Back-up : How does Q impact the sensitivity ?

Back-up : why microwave cavity and not optical ?

1. $\vec{E}_{DP} \approx -i\chi\omega\vec{\phi}e^{-i\omega t}$ valid if we neglect k.

To do so, we require L $\ll \lambda$ (L, size of experiment considered (< 10 cm)) \rightarrow ok in microwave range

$$\rightarrow$$
 in optical range, k ~ 10⁶ m⁻¹ $\gg \frac{2\pi}{\lambda}$

2. Optical frequency \equiv eV mass \rightarrow QFT required for DP field

Back-up : DP cosmo evolution + field equations

• Free Klein-Gordon equation (in expanding universe) of each DP space component ϕ^i

$$\ddot{\phi}^i + 3H\dot{\phi}^i + m^2\phi^i \approx 0$$

whose solution is oscillatory.

Nelson, Scholtz, PRD, 2011

- Additionally, $p_{ij} \sim \langle T_{ij} \rangle = 0$ and the field behaves as pressureless fluid or CDM
- In the **microwave regime** and considering $v_{DM} \sim 10^{-3}$ in Earth's frame, the DP field can be approximated by a standing wave in a cavity of length $L \sim 10$ cm. Then,

$$\omega=m$$
 ; $\phi^0=0$

• The DP mixes with the SM photon as

$$\partial_{\mu}\partial^{\mu}A^{\nu} = -\chi\phi^{\nu}$$
$$(\partial_{\mu}\partial^{\mu} + m^{2})\phi^{\nu} = -\chi\partial_{\mu}\partial^{\mu}A^{\nu}$$

Back-up : Systematic noise and Data analysis

 $\sqrt{S_{RIN}}$ of different sources (arXiv : Rubiola, 2005)

77

AM noise of some sources

h_{-1} (flicker)		$(\sigma_{lpha})_{ m floor}$
2.5×10^{-11}	-106.0 dB	5.9×10^{-6}
1.1×10^{-12}	−119.6 dB	1.2×10^{-6}
1.0×10^{-12}	-120.0 dB	1.2×10^{-6}
	2.5×10^{-11} 1.1×10^{-12}	$\begin{array}{c} h_{-1} \mbox{(flicker)} \\ \hline 2.5 \times 10^{-11} & -106.0 \mbox{ dB} \\ \hline 1.1 \times 10^{-12} & -119.6 \mbox{ dB} \\ \hline 1.0 \times 10^{-12} & -120.0 \mbox{ dB} \end{array}$