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Why do we need Dark Matter ?
Explains astrophysical observations at different scales : 

• Galactic scale
(velocity rotation curves, weak lensing,…)

• Galactic cluster scale
(bullet cluster, strong lensing,…)

• Cosmological scale
(CMB, structure formation,…)

ESA
Non Baryonic Matter 
or Dark Matter with 
Ω!" ~ 0.259
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Classes of DM

Fig. 1 from US cosmic vision : new idea for Dark Matter 2017, Arxiv:1707:04951

ULDM mass interval
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Ultralight Dark Matter (ULDM) models
𝑛
𝑛!
~
6𝜋"ℏ#

𝑐"
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𝑚&𝑣'()# > 𝟏

àULDM (with 𝑚 < 10 𝑒𝑉) has to be bosonic (Pauli exclusion principle)

• When 𝒎 ≪ 𝒆𝑽 → !
!!
≫ 1 → the field can be treated classically.

• We classify the different ULDM models from their nature

~0.3 𝐺𝑒𝑉/𝑐𝑚!

~10"!𝑐

< 10 𝑒𝑉 Inspired from Tourrenc et al, Arxiv:quantum-ph/0407187, 2004

Ø Scalar field (Dilatons,...)
Ø Pseudo-scalar field (Axions,…)
Ø Vector field (Dark photons (DP),...)

Occupation number 
in phase space
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Does DP induce oscillating electric field ?

• Cosmologically, DP field oscillates at its Compton frequency 𝜙 = 𝜙" cos𝜔𝑡

• DP lagrangian given by

ℒ = −
1
4
𝜙#$𝜙#$ −

1
2
𝑚%𝜙#𝜙# −

𝜒
2
𝐹#$𝜙#$

• The mixing term generates a standard electric field filling the whole space

𝐸&' ≈ −𝑖𝜒𝜔𝜙𝑒()*+

which we would like to detect ! Or, constrain 𝝌 on a given range of DP masses.

• Additionally, if DP field accounts for the whole DM, |𝐸&'| = 𝜒 2𝜌&,

EM strength tensor

DP strength tensor

Kinetic mixing coupling

DP field Horns et al. JCAP, 2013

𝜔 = 𝑚 (k = 0)
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• Microwave cavity : Resonator confining EM signal with frequencies in the microwave range 
(𝒪 𝐺𝐻𝑧 )

• In real cavities, loss of energy characterized by quality factor, Q.
The larger Q is, the higher electric field amplitude will be inside the cavity
à Q is the amplitude amplification factor

• In the context of DP, 𝐸23 acts as another initial wave which might enter in resonance.

Resonant cavity and why using it in this context ?

Fig. 2 :  Signal applied
inside a microwave cavity, with the appropriate 

frequency such that a resonance occurs. 
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The experiment : Setup using microwave signal 
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We can either measure the DM electric field directly…

The experiment : Setup using microwave signal 

𝑬𝑻 ∝ 𝑿𝑫𝑴𝒆7𝒊𝝎𝑫𝑴𝒕
DM field contrib. (small)

à Oscillate too fast (𝒪(𝐺𝐻𝑧))
à Amplitude too small (𝒪(𝜒))
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We can either measure the DM electric field directly…

The experiment : Setup using microwave signal 

Fig. 3 : A microwave signal 
sent inside a resonant 

cavity, with a frequency 
close to the one of the 

hypothetical DP. 

|𝑬𝑻|𝟐 ∝ 𝑿𝒂𝑿𝑫𝑴 𝐜𝐨𝐬(∆𝝎𝒕 + 𝝓𝒂) + 𝐜𝐨𝐬(𝜮𝝎𝒕 + 𝝓𝒂) + 𝑿𝑫𝑴𝟐 𝐜𝐨𝐬(𝟐𝝎𝑫𝑴𝒕) + 𝑿𝒂𝟐 𝐜𝐨𝐬(𝟐𝝎𝒂𝒕 + 𝝓𝒂)
Oscillation too fast/Amplitude too small✓

𝜔( − 𝜔)* 𝜔( + 𝜔)*

𝑬𝑻 ∝ 𝑿𝑫𝑴𝒆7𝒊𝝎𝑫𝑴𝒕
DM field contrib. (small)

à Oscillate too fast (𝒪(𝐺𝐻𝑧))
à Amplitude too small (𝒪(𝜒))
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…or apply an external field and measure the square of the total electric field  



We can either measure the DM electric field directly…

The experiment : Setup using microwave signal 

Fig. 3 : A microwave signal 
sent inside a resonant 

cavity, with a frequency 
close to the one of the 

hypothetical DP. 

|𝑬𝑻|𝟐 ∝ 𝑿𝒂𝑿𝑫𝑴 𝐜𝐨𝐬(∆𝝎𝒕 + 𝝓𝒂) + 𝐜𝐨𝐬(𝜮𝝎𝒕 + 𝝓𝒂) + 𝑿𝑫𝑴𝟐 𝐜𝐨𝐬(𝟐𝝎𝑫𝑴𝒕) + 𝑿𝒂𝟐 𝐜𝐨𝐬(𝟐𝝎𝒂𝒕 + 𝝓𝒂)
Oscillation too fast/Amplitude too small✓

àThe DM frequency we look for is such that ∆𝝎 < 𝒇𝒔, sampling frequency of the apparatus
àIn addition, we take advantage of the possible high injected power contained in 𝑿𝒂

𝜔( − 𝜔)* 𝜔( + 𝜔)*

𝑬𝑻 ∝ 𝑿𝑫𝑴𝒆7𝒊𝝎𝑫𝑴𝒕
DM field contrib. (small)

à Oscillate too fast (𝒪(𝐺𝐻𝑧))
à Amplitude too small (𝒪(𝜒))
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Best way of measuring the square of the electric field strength is through Stark effect

𝜟𝝂 =
𝟏
𝟐𝒉

∆𝜶 𝑬 𝟐

àMeasurement of transition frequency of an atom and look for 𝜈 𝑡 = 𝜈> + 𝜟𝝂𝐜𝐨𝐬(𝜟𝝎𝒕 + 𝝓𝒂)

With Rydberg atoms : 
- High accuracy on 𝜟𝝂 from 𝑬 𝟐

- Large polarizability ∆𝜶
- Good resolution on 𝑬 𝟐 (with small 𝑇?@A)

The experiment : Detection using Rydberg atoms

à Better sensitivity to 𝑬 𝟐
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Fig. 4 : Atoms at the center 
of the cavity to measure 

the Stark effect induced by 
𝑬𝑻 𝟐



1) Apply electric field with initial frequency 𝜔B during 𝑇?@A
à scan possible DM signals with Δ𝜔 < 𝑓A

2) Shift applied frequency by 2 × 10C Hz for another 𝑇?@A

à Large window of DM masses scanable (= 𝟐𝑵𝒇𝒔)

The experiment : Experimental methodology

𝑓#

Fig. 5 : Allowed interval 
for 𝜔#$ for a given

applied frequency 𝜔% N times
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Rough estimation of the experiment’s sensitivity
Statistical noise: Measurement uncertainty of the electric field squared from the atoms.
à Minimal detectable field power 𝐸EFG H = 1 (V/m)H

à 𝜒(𝜔2I) = 𝑓(𝑄, 𝑋B, 𝑋2I, … )
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From C. O’Hare : 
https://github.com/cajohare



Rough estimation of the experiment’s sensitivity
Statistical noise: Measurement uncertainty of the electric field squared from the atoms.
à Minimal detectable field power 𝐸EFG H = 1 (V/m)H

à 𝜒(𝜔2I) = 𝑓(𝑄, 𝑋B, 𝑋2I, … )

10

From C. O’Hare : 
https://github.com/cajohare



Rough estimation of the experiment’s sensitivity
Statistical noise: Measurement uncertainty of the electric field squared from the atoms.
à Minimal detectable field power 𝐸EFG H = 1 (V/m)H

à 𝜒(𝜔2I) = 𝑓(𝑄, 𝑋B, 𝑋2I, … )

Fig. 6 : Constraint on 𝜒 obtained with this setup. The exclusion plot on the 
right shows only lab experiments and omit cosmological ones such as CMB. 10

From C. O’Hare : 
https://github.com/cajohare



Rough estimation of the experiment’s sensitivity
Systematic noise: RIN (Relative Intensity Noise) of a signal describes the fluctuation of its power. 

∆𝑋B
𝑋B

= 𝑅𝐼𝑁 =
2𝑆JKL
𝑇?@A

Close to resonances, the applied field amplitude is enhanced a lot (with its fluctuation)
à The experimental limit becomes the systematic effect and  

𝜒 ≈
∆𝑋B
𝑋B

No dependence on Q or any other cavity parameters.
⇒↘ 𝑺𝑹𝑰𝑵 or ↗ 𝑻𝒐𝒃𝒔 ⟹ Better constraint on 𝝌

à 𝑬𝑻 = 𝑨 𝑿𝑫𝑴, 𝝎𝑫𝑴 𝒆$𝒊𝝎𝑫𝑴𝒕 + 𝑩 𝑿𝒂, 𝝎𝒂 𝒆$𝒊𝝎𝒂𝒕 + syst. noise ∝ Δ𝑋$
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Rough estimation of the experiment’s sensitivity
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Without systematics 

Rough estimation of the experiment’s sensitivity
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Without systematics 

Rough estimation of the experiment’s sensitivity
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Without systematics 

Rough estimation of the experiment’s sensitivity
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With systematics 

Without systematics 

Rough estimation of the experiment’s sensitivity
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With systematics 

Without systematics 

Fig. 7 : Constraint on 𝜒 obtained with this setup for 𝑇&'(= 600 s , 𝑆)*+ = 10,-./𝜔

Rough estimation of the experiment’s sensitivity
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With systematics 

Without systematics 

Fig. 7 : Constraint on 𝜒 obtained with this setup for 𝑇&'(= 600 s , 𝑆)*+ = 10,-./𝜔

Rough estimation of the experiment’s sensitivity

à Not dramatic change in sensitivity
à Need to consider 𝑻𝒐𝒃𝒔 = 𝟔𝟎𝟎 s
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Total experiment time 𝑻𝒕𝒐𝒕 = 𝑵𝑻𝒐𝒃𝒔
𝑻𝒕𝒐𝒕 ~ 𝟏 month ≡ scan DM masses ∈ [5.9 ; 6.5] 𝝁𝒆𝑽

With systematics 

Without systematics 

Fig. 7 : Constraint on 𝜒 obtained with this setup for 𝑇&'(= 600 s , 𝑆)*+ = 10,-./𝜔

Rough estimation of the experiment’s sensitivity

à Not dramatic change in sensitivity
à Need to consider 𝑻𝒐𝒃𝒔 = 𝟔𝟎𝟎 s

Nb of times we switch 𝜔(
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Conclusion

• DP is a serious DM candidate à numerous lab experiments trying to detect it.
• Proposal of a new kind of experiment looking for DP using atoms inside a 

microwave cavity. As a resonant device, it acts as a narrow band DM detector.
• With the current technology in quantum optics, competitive constraints on the 

coupling constant 𝝌 compared to other lab experiments.

Next step : How to mitigate the experimental limiting factor, the systematic effect? 
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Thank you for your attention !



Back-up : Cavity parameters 

• Resonance conditions : 𝜆 = %G
!
𝑜𝑟 𝑘𝐿 = 𝑛𝜋

• Detection at the center from atoms à we require n odd (antinode at the center)

• Reflectivity coeff of mirrors r is related to quality factor as

𝑄 =
2𝜋

𝜆(1 − 𝑟%)
This relation is valid only around resonances.

• Finesse of a cavity defined as 
ℱ = 2𝜋𝑁H → ℱ ≈ 𝑄



Back-up : Atomic clock

Atoms inside a cavity, excited by a laser.
The closer the frequency of the laser is to the energy difference between the 2 levels, the more 
excited atoms there will be 
àAssessment of the frequency of the laser to be closest possible to the energy difference.
à Wave with appropriate frequency and need to count oscillations to give time

From http://hyperphysics.phy-astr.gsu.edu



Back-up : How does Q impact the sensitivity ?

𝑸 = 𝟏𝟎𝟔

𝑸 = 𝟏𝟎𝟒

Without systematics 

Without systematics 



Back-up : why microwave cavity and not optical ?

1. EIJ ≈ −iχωϕe(KLM valid if we neglect k. 

To do so, we require L ≪ λ (L, size of experiment considered (< 10 cm))
à ok in microwave range 
à in optical range, k ~ 10N m(O ≫ %P

Q

2. Optical frequency ≡ eV mass 
à QFT required for DP field



Back-up :DP cosmo evolution + field equations
• Free Klein-Gordon equation (in expanding universe) of each DP space component 𝜙F

�̈�F + 3𝐻�̇�F +𝑚H𝜙F ≈ 0
whose solution is oscillatory.

• Additionally, 𝑝FW ~ 𝑇FW = 0 and the field behaves as pressureless fluid or CDM

• In the microwave regime and considering 𝒗𝑫𝑴~𝟏𝟎7𝟑 in Earth’s frame, the DP field can be
approximated by a standing wave in a cavity of length 𝐿 ~ 10 cm. Then, 

𝜔 = 𝑚 ; 𝜙> = 0
• The DP mixes with the SM photon as

𝜕Y𝜕Y𝐴Z = −𝜒𝜙Z
(𝜕Y𝜕Y +𝑚H)𝜙Z = −𝜒𝜕Y𝜕Y𝐴Z

Nelson, Scholtz, PRD, 2011



Back-up : Systematic noise and Data analysis

`

𝑆)*+ of a Nd laser, measurement 
provided by Artemis lab.

𝑆)*+ of different sources (arXiv : Rubiola, 2005)


