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LISA

"+ ESA L mission to measure low-frequency gravitational waves
* Heterodyne Laser interferometry over 2.5 million km
* Received light power with 30 cm telescope : ~ 1nW
* Doppler shifts of £10 MHz
* GW are encoded in the phase of received light

* Need ~10pm noise at mHz frequencies
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LISA phasemeter

Nt

* At the core of the LISA metrology

Primary function: measure phase of multiple beat notes at 5...30 MHz, varying
at few Hz/s, with poor SNR

Phase must be continuously tracked to pcycle accuracy, output rate 16 Hz

Auxiliary functions include extra beatnotes for clock noise transfer,
and pseudo-random noise modulation for absolute ranging and data
transfer

German(+DK) contribution to LISA




LISA phasemeter

* Based on digital phase locked loop (DPLL)

* Areplica of the analog input signal is created and tracked in a digital
Numerically controlled oscillator (NCO)

* Phase and frequency then exist in digital registers from where they can be
directly read out
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Differential Wavefront Sensing (DWS)

* Standard technique to sense relative misalignments of interfering beams

* Essential for LISA to control spacecraft pointing

* Usual method uses four separate DPLLs and then combines the output
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New DWS approach

* Separate tracking loops for length (high dynamic range) and angles (slow)
* Can be separately optimized

* Increases robustness against cycle slips
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B The testing question

* There is no reference phasemeter of sufficient quality

* Only choice: test phasemeter against itself

* Splitting the zero: O=a-a
=> Only lower noise limit, common mode errors are not
detected
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B 3-signal test

Split three different signals: 0=a+b+c

Generate 3 independent signals that fulfil a+b+c=0,
pass them through 3 separate phasemeters / channels,
test the output for a+b+c=0

Allows arbitrary dynamics and probing of nonlinearities
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3-signal test

“Test O=a+b+c: «Three methods

* Digital only: possible but incomplete
* Analog electrical

* Optical
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Electrical test with analog MHz signals is possible but limited by
performance of analog mixers
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Optical 3-signal test

Includes photoreceivers, more complete test of signal chain
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Lab notebook 2009

3 different lasers are mixed, producing beatnotes a-b, a-c, b-c
By construction, they can be combined to zero, after separately
passing through optics, photoreceiver, phasemeter
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B Optical simulation

No suitable software was available: Development of IFOCAD

* 3D raytracing
* Parametrized layout

* Includes optimization functions (zero-finding, minimizing FOM)
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Ghost

beams

Ghost beams were expected to create extra noise, thus the
components are designed with a wedge angle to deflect them
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B Optical simulation

IFOCAD is now a much larger software, taken over by others

* Converted to C++

* Includes many new features, i.e. non-Gaussian beams...
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| Beam preparation

The frequency differences (=phasemeter
signals) can be chosen arbitrary, including
high dynamics.

* Only restriction: <25MHz

* a+b+c = 0 automatically achieved by optics
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New monolithic fiber couplers: Daniel Penkert

The wedged components cause a huge tilit-to-length coupling; and
the commercial metal fiber couplers were not stable enough.

* Therefore a monolithic design was developed; now also used in
other projects
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Commissioning and noise hunting: Thomas Schwarze
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Starting point: noise subtraction by many orders of magnitude,
but not yet quite there
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Commissioning and noise hunting: Thomas Schwarze
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PHYSICAL REVIEW LETTERS 122, 081104 (2019)

Picometer-Stable Hexagonal Optical Bench to Verify LISA Phase
Extraction Linearity and Precision

Thomas S. Schwarze,* German Fernandez Barranco, Daniel Penkert,
Marina Kaufer,” Oliver Gerberding, and Gerhard Heinzel
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Callinstrasse 38, 30167 Hannover, Germany
and Leibniz Universitidt Hannover, Institut fiir Gravitationsphysik, Callinstrasse 38, 30167 Hannover, Germany

Long and careful noise hunting: polarization, amplitude,...,...
in parallel development of phasemeter




Extending the scope: Kohei Yamamoto

MHz + noise
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3 independent phasemeters and all modulations

T
D 1
pLr EELEd queéesTt



Extending the scope: Kohei Yamamoto

3 independent phasemeters and all
modulations:

* Test of key TDI ingredients:

* Clock sync, PRN ranging, TDI ranging

* Clock noise removal

to laser 2 and 3
 ——

* Shift and interpolate time series to nsec
* Test of PRN data transfer
* Test of Phasemeter behaviour at low SNR

PHYSICAL REVIEW D 105, 042009 (2022)

Experimental verification of intersatellite clock synchronization

at LISA performance levels
Kohei Yamamoto®,"” Christoph Vorndamme ,! Olaf Hartwig % Martin Staab®,’
Thomas S. Schwarze ,H and Gerhard Heinzel®'
'Max-Planck Institut fiir Gravitationsphysik (Albert-Einstein Institut),
Callinstrafse 38, 30167 Hannover, Germany
2LNE—SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université,
61 avenue de I’Observatoire, 75014 Paris, France ﬂ




Extending the scope: Kohei Yamamoto

1012

input phase noise three-signal test: Azpy (3rd-order CIC)

total clock jitter performance limit: Az,
three-signal test: raw
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Test of clock noise removal, filtering, interpolation
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I Next steps

Continue clock-noise, ranging experiments: Kohei Yamamoto

Testbed for phasemeter development (new algorithms, data
rates...)

Inject Hexagon data with all its artefacts into processing steps
of LISA data analysis (instead of stationary white noise):
Narjiss Messied

Build second Hexagon with minor modifications from lessons
learnt (non-wedged components, polarization cleaning):
Daniel Penkert, Reid Ferguson
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