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We are not alone

► 2 Cs fountain clocks 
(uncertainty 2×10⁻¹⁶)

► 2/3 Yb⁺ E3/E2 clocks
(uncertainty 3×10⁻¹⁸)

► In⁺ clock
(uncertainty <1×10⁻¹⁷)

► ⁸⁷Sr lattice clock 
+ transportable, (uncertainty 3×10⁻¹⁸)

► Al⁺ on the way
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Outline

► first Sr clock (Sr1)
comparisons with Cs & Yb⁺
LPI tests 

► cryogenic lab clock (Sr3)
cooling in homogeneous environment
low 10⁻¹⁸ uncertainty

► transportable clock (Sr2 & Sr4)
new insights in old data
clock laser with 10⁻¹⁶ instability
single-beam MOT + cryo-environment
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First lab clock Sr1

long-term operation, 
many comparisons with 
Cs fountain clocks

Schwarz et al, Phys. Rev. Res. 2, 033242 (2020)
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First lab clock Sr1

Frequency variations: 

o temporal drift

o coupling to gravitational field

Schwarz et al, Phys. Rev. Res. 2, 033242 (2020)

Sr – Cs: mostly µ = mp/me
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First lab clock Sr1

Schwarz et al, Phys. Rev. Res. 2, 033242 (2020)

Sr – Cs: mostly µ = mp/me



Frequency variations: 

o temporal drift

o coupling to gravitational field
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First lab clock Sr1

Schwarz et al, Phys. Rev. Res. 2, 033242 (2020) McGrew et al, Optica 6, 448 (2019)



gravitydrift
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Other clocks are more sensitive: Yb⁺

Lange et al, Phys. Rev. Lett. 126, 011102 (2021)

Two clock transitions in one atom (E2/E3), high sensitivity

strongly lowered limits: temporal α variation 1.0(1.1)×10⁻¹⁸ 

gravitational α variation 14(11)×10⁻⁹

Yb⁺ E3 – Cs
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Other clocks are more sensitive: Yb⁺

Lange et al, Phys. Rev. Lett. 126, 011102 (2021)

Two clock transitions in one atom (E2/E3), high sensitivity

Yb⁺ E3 – CsYb⁺ E3 – E2

strongly lowered limits: temporal α variation 1.0(1.1)×10⁻¹⁸ 

gravitational α variation 14(11)×10⁻⁹
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Other clocks are more sensitive: Yb⁺

Lange et al, Phys. Rev. Lett. 126, 011102 (2021)

Two clock transitions in one atom (E2/E3), high sensitivity

preliminaryYb⁺ E3 – E2

strongly lowered limits: temporal α variation 1.0(1.1) 0.11(0.30)×10⁻¹⁸ 

gravitational α variation 14(11) 8.6(3.9)×10⁻⁹
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First lab clock Sr1

So far: 
probing of ⁸⁷Sr in large chamber,
in vacuum coils

 thermal gradients, large uncertainty (interaction with radiation)

careful with atomic coefficients: Lisdat et al, Phys. Rev. Res. 3, L042036 (2021)
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Cryogenic lab clock Sr3

in-vacuum heat shield

operation between 300 K and 80 K

ΔT = 30 mK on inner shield
simulation and measurements are consistent
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Cryogenic lab clock Sr3

residual blackbody radiation transmission of windows: 
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Cryogenic lab clock Sr3

high clock stability thanks to ultra-stable cavities

Matei et al, Phys. Rev. Lett. 118, 263202 (2017)

clock self-comparison

estimate:
1×10⁻¹⁶ τ⁻⁰.⁵



Search for a characteristic oscillation of (E3)/(E2)
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Lomb-Scargle periodogram
• Investigation using data from the last 

1.5 years
• No indications for significant

deviations from white frequency noise
• Motivates a search for ultra-light 

bosonic dark matter [1] 

[1] A. Arvanitaki et al., PRD 91, 015015 (2015)



Search for a characteristic oscillation of (E3)/(Sr)
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• Data from measurement campaign in spring 2022
• High stability of lattice clock + high sensitivity of

171Yb+ E3 transitions to variations of 
• Motivates a search for ultra-light bosonic dark

matter [1] 

[1] A. Arvanitaki et al., PRD 91, 015015 (2015)

PRELIMINARY:



Search for ultra-light dark matter

2018-05-07 17 ppt-folie-vorlage

• Ultralight bosonic dark matter 
expected to locally behave like 
a classical field with a 
frequency given by the 
Compton frequency [1]

• A coupling de of such a dark
matter field to  would lead to
coherent oscillations 

• Re-scaling due to stochastic 
nature of dark matter [2]

[1] A. Arvanitaki et al., PRD 91, 015015 (2015)
[2] G.P. Centers et al., Nat. Com. 12,7321 (2021)
[Dy/Dy] K. Van Tilburg et al., PRL 115, 011802 (2015)

A. Hees et al., PRL 117, 061301 (2016)
[Sr/Si cav] C. J. Kennedy et al., PRL 125, 201302 (2020)
BACON collab., Nature 564, 564 (2021)

Preliminary:
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Transportale clocks: chronometric levelling

Δ𝜈

𝜈
= 1 × 10−18 ⟺ ∆𝑈 ≅ 0.1

m2

s2
⟺ ∆ℎ ≅ 1 cm

fractional frequency
difference

geopotential height

Wish list:

• two clocks

• a link to compare their 
frequencies

• frequency offset/ratio 
must be know

• frequency resolution of 10⁻¹⁸

• flexibility in deployment
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Transportable Sr lattice clock Sr2

• so far: setup in car trailer,

uncertainty 2×10⁻¹⁷

instability 2×10⁻¹⁵ τ⁻⁰.⁵

Koller et al, Phys. Rev. Lett. 118, 073601 (2017)
Grotti et al, Nature Phys. 14, 437 (2018)
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Transportable Sr lattice clock Sr2

• First spectroscopy 5 days 
after arrival

• Some trouble with 
the fibre link

• Break of a few weeks

• Four days to recover 
clock operation

• Five days for data taking

Munich – Braunschweig 
2018
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Transportable Sr lattice clock Sr2

• Good: same ratio before and after transportation

• Sr–Sr comparison should have a local ratio of 1,
something is not good

• We would not mind if we had different clocks
(where we do not know the frequency ratio)

• Assume that the clocks keep their frequency

• Derive Δ𝑈clock = 3917.84(397) m2/s2

• Compare with Δ𝑈geod = 3915.94(42) m2/s2

Munich – Braunschweig 
2018
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Transportable Sr lattice clock Sr2

• so far: setup in car trailer,

uncertainty 1×10⁻¹⁷

instability 2×10⁻¹⁵ τ⁻⁰.⁵

• application: 

chronometric levelling – determination 

of height differences by 

measurement of relativistic redshift

• 10 cm – 20 cm height resolution insufficient for geodesy

Koller et al, Phys. Rev. Lett. 118, 073601 (2017)
Grotti et al, Nature Phys. 14, 437 (2018)
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Transportable Sr lattice clock Sr4

Transportable clock Sr4 

operation 300 K to 80 K

minimizing leading uncertainty (BBR)  

Technical solutions:

Phys. Rev. A 101, 013420 (2020),

J. Phys. B 47, 075006 (2014),

Nature Phot. 9, 185-189 (2015) 

Sr4
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Transportable Sr clock laser

New generation:

• 20 cm spacer

• single crystalline mirror coatings

(operation at subharmonic of 

clock transition)

• Clock stability is strongly dependent on 

clock laser performance

• Rigid cavity mounting is 

challenging (seismic perturbations)

• Short cavities (5 cm – 10 cm), 

relatively high thermal noise floor

Häfner et al, Opt. Expr. 28, 16407 (2020), Herbers et al, Opt. Lett. 47, 5441 (2022)
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Transportable Sr clock laser

New generation:

• significantly lower noise

• not as low as expected for

single-crystalline coatings

• fibre noise cancellation to

− frequency doubler/atoms

− frequency comb

− cavity

• no active stabilization of residual amplitude 

modulation (RAM) 

Häfner et al, Opt. Expr. 28, 16407 (2020), Herbers et al, Opt. Lett. 47, 5441 (2022)
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Transportable Sr lattice clock Sr4

Hopefully early in 2023:

full transportable lattice clock with

• low-10⁻¹⁸ uncertainty and 

• mid 10⁻¹⁶ instability (in 1 s)

Application in chronometric levelling with 

centimetre height resolution

and ICON network
SFB 1464
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In conclusion:

► first Sr clock (Sr1)
comparisons with Cs & Yb⁺
LPI tests 

► cryogenic lab clock (Sr3)
cooling in homogeneous environment
low 10⁻¹⁸ uncertainty

► transportable clock (Sr2 & Sr4)
new insights in old data
clock laser with 10⁻¹⁶ instability
single-beam MOT + cryo-environment

EXC 2123 SFB 1464SFB 1227


