



# **Experiments with** strontium lattice clocks at PTB

### **Christian Lisdat**

and the teams

at the PTB Sr lattice and

Yb<sup>+</sup> single ion clocks













20.11.2022, ACES Workshop, Paris

### We are not alone

- ► 2 Cs fountain clocks (uncertainty  $2 \times 10^{-16}$ )
- ► 2/3 Yb<sup>+</sup> E3/E2 clocks (uncertainty 3×10<sup>-18</sup>)
- ► In<sup>+</sup> clock (uncertainty  $< 1 \times 10^{-17}$ )
- ▶ <sup>87</sup>Sr lattice clock + transportable, (uncertainty 3×10<sup>-18</sup>)
- $\blacktriangleright$  Al<sup>+</sup> on the way



National Metrology Institute

Sr 698 nm

Si 1.5 µm

ULE

1.5 µm

OS 9.2 GHz

Yb<sup>+</sup> 435x2 nm

Yb<sup>+</sup> 467x2 nm



y. LALE - BAU

PASCHEN - BAU

267x4 nm

870 nm 苗

DEBE - BAL

In

237x4 nm

📥 1.5 μm

ULE 822 nm

### Outline



- first Sr clock (Sr1) comparisons with Cs & Yb<sup>+</sup> LPI tests
- cryogenic lab clock (Sr3) cooling in homogeneous environment low 10<sup>-18</sup> uncertainty
- transportable clock (Sr2 & Sr4) new insights in old data clock laser with 10<sup>-16</sup> instability single-beam MOT + cryo-environment







### First lab clock Sr1





long-term operation, many comparisons with Cs fountain clocks



Schwarz et al, Phys. Rev. Res. 2, 033242 (2020)



Frequency variations: o temporal drift

• coupling to gravitational field  $\frac{1}{F}dF = \kappa_{\alpha}\frac{1}{\alpha}d\alpha + \kappa_{\mu}\frac{1}{\mu}d\mu + \kappa_{q}\frac{1}{X_{a}}dX_{q}$ 

 $X_q = m_q / \Lambda_{\rm QCD}$ 

Sr – Cs: mostly  $\mu = m_p/m_e$ 



#### Schwarz et al, Phys. Rev. Res. 2, 033242 (2020)



# Frequency variations: o temporal drift

coupling to gravitational field

$$\frac{1}{F}dF = \kappa_{\alpha}\frac{1}{\alpha}d\alpha + \kappa_{\mu}\frac{1}{\mu}d\mu + \kappa_{q}\frac{1}{X_{q}}dX_{q}$$
$$X_{q} = m_{q}/\Lambda_{\rm QCD}$$

Sr – Cs: mostly  $\mu = m_p/m_e$ 

$$v_{\rm Sr}(t) = v_0 \{1 + A \cos \left[2\pi (t - t_0)/T_0\right]\}$$
  
 $\beta_{\rm Sr,Cs} = \frac{A}{\Delta \Phi/c^2} = -1.1(5.2) \times 10^{-7}$ 

Schwarz *et al,* Phys. Rev. Res. **2**, 033242 (2020)



### First lab clock Sr1





Schwarz et al, Phys. Rev. Res. 2, 033242 (2020)

McGrew *et al*, Optica **6**, 448 (2019)

### Other clocks are more sensitive: Yb<sup>+</sup>



### Two clock transitions in one atom (E2/E3), high sensitivity





strongly lowered limits: temporal  $\alpha$  variation 1.0(1.1)×10<sup>-18</sup>

Lange et al, Phys. Rev. Lett. **126**, 011102 (2021)

gravitational  $\alpha$  variation 14(11)×10<sup>-9</sup>

### Other clocks are more sensitive: Yb<sup>+</sup>



### Two clock transitions in one atom (E2/E3), high sensitivity



strongly lowered limits: temporal  $\alpha$  variation 1.0(1.1)×10<sup>-18</sup>

Lange *et al*, Phys. Rev. Lett. **126**, 011102 (2021) gravita

gravitational  $\alpha$  variation 14(11)×10<sup>-9</sup>

### Other clocks are more sensitive: Yb<sup>+</sup>



Two clock transitions in one atom (E2/E3), high sensitivity



strongly lowered limits: temporal  $\alpha$  variation  $\frac{1.0(1.1)}{0.11(0.30)} \times 10^{-18}$ 

Lange *et al*, Phys. Rev. Lett. **126**, 011102 (2021) grav

gravitational  $\alpha$  variation  $\frac{14(11)}{8.6(3.9)} \times 10^{-9}$ 

### First lab clock Sr1





So far:

probing of <sup>87</sup>Sr in large chamber, in vacuum coils



⇒ thermal gradients, large uncertainty (interaction with radiation)

careful with atomic coefficients: Lisdat et al, Phys. Rev. Res. 3, L042036 (2021)

## **Cryogenic lab clock Sr3**



#### in-vacuum heat shield Point Labertail operation between 300 K and 80 K alacherseni Multislice: (T - 80.530 K) / mK [stationary] -200 -100 0 100 ▲ 2.15×10<sup>4</sup> 50 6 4 Delant 10.000 2 0 0 -2 -4 -50 -6 ¥ -8 $\Delta T = 30$ mK on inner shield -10 AACE INC. simulation and measurements are consistent ▼-3530

# **Cryogenic lab clock Sr3**





13

## **Cryogenic lab clock Sr3**





# PB Search for a characteristic oscillation of v(E3)/v(E2)

- Investigation using data from the last 1.5 years
- No indications for significant deviations from white frequency noise
- Motivates a search for ultra-light bosonic dark matter [1]



Physikalisch-Technische Bundesanstalt 
Braunschweig and Berlin

#### Lomb-Scargle periodogram



[1] A. Arvanitaki et al., PRD 91, 015015 (2015)

# $\sim$ PIB Search for a characteristic oscillation of v(E3)/v(Sr)

- Data from measurement campaign in spring 2022
- High stability of lattice clock + high sensitivity of  $^{171}{\rm Yb^{+}}$  E3 transitions to variations of  $\alpha$
- Motivates a search for ultra-light bosonic dark matter [1]



#### PRELIMINARY:



[1] A. Arvanitaki et al., PRD 91, 015015 (2015)

# PB Search for ultra-light dark matter

- Ultralight bosonic dark matter expected to locally behave like a classical field with a frequency given by the Compton frequency [1]
- A coupling d<sub>e</sub> of such a dark matter field to  $\alpha$  would lead to coherent oscillations  $\alpha$
- Re-scaling due to stochastic nature of dark matter [2]



[1] A. Arvanitaki et al., PRD 91, 015015 (2015)
[2] G.P. Centers et al., Nat. Com. 12,7321 (2021)
[Dy/Dy] K. Van Tilburg et al., PRL 115, 011802 (2015)

A. Hees et al., PRL 117, 061301 (2016) [Sr/Si cav] C. J. Kennedy et al., PRL 125, 201302 (2020) BACON collab., Nature 564, 564 (2021)

### **Transportale clocks: chronometric levelling**





$$\frac{\Delta \nu}{\nu} = 1 \times 10^{-18} \iff \Delta U \cong 0.1 \frac{\text{m}^2}{\text{s}^2} \iff \Delta h \cong 1 \text{ cm}$$
fractional frequency geopotential height difference

### Wish list:

- two clocks
- a link to compare their frequencies
- frequency offset/ratio must be know
- frequency resolution of 10<sup>-18</sup>
- flexibility in deployment

 so far: setup in car trailer, uncertainty 2×10<sup>-17</sup> instability 2×10<sup>-15</sup> τ<sup>-0.5</sup>





Koller *et al*, Phys. Rev. Lett. **118**, 073601 (2017) Grotti *et al*, Nature Phys. **14**, 437 (2018)





### Munich – Braunschweig 2018

- First spectroscopy 5 days after arrival
- Some trouble with the fibre link
- Break of a few weeks
- Four days to recover clock operation
- Five days for data taking





### Munich – Braunschweig 2018

- Good: same ratio before and after transportation
- Sr–Sr comparison should have a local ratio of 1, something is not good
- We would not mind if we had different clocks (where we do not know the frequency ratio)
- Assume that the clocks keep their frequency
- Derive  $\Delta U_{clock} = 3917.84(397) \text{ m}^2/\text{s}^2$
- Compare with  $\Delta U_{\text{geod}} = 3915.94(42) \text{ m}^2/\text{s}^2$

- so far: setup in car trailer, uncertainty  $1 \times 10^{-17}$ instability  $2 \times 10^{-15} \tau^{-0.5}$
- application:
   chronometric levelling determination
   of height differences by
   measurement of relativistic redshift
- 10 cm 20 cm height resolution insufficient for geodesy

Koller *et al*, Phys. Rev. Lett. **118**, 073601 (2017) Grotti *et al*, Nature Phys. **14**, 437 (2018)









Technical solutions: Phys. Rev. A 101, 013420 (2020), J. Phys. B 47, 075006 (2014), Nature Phot. 9, 185-189 (2015)

**Transportable clock Sr4** operation 300 K to 80 K minimizing leading uncertainty (BBR)

## **Transportable Sr clock laser**

- Clock stability is strongly dependent on clock laser performance
- Rigid cavity mounting is challenging (seismic perturbations)
- Short cavities (5 cm 10 cm), relatively high thermal noise floor

New generation:

- 20 cm spacer
- single crystalline mirror coatings (operation at subharmonic of clock transition)

Häfner et al, Opt. Expr. 28, 16407 (2020), Herbers et al, Opt. Lett. 47, 5441 (2022)





## **Transportable Sr clock laser**

PB

### New generation:

- significantly lower noise
- not as low as expected for single-crystalline coatings
- fibre noise cancellation to
  - frequency doubler/atoms
  - frequency comb
  - cavity
- no active stabilization of residual amplitude modulation (RAM)

Häfner et al, Opt. Expr. 28, 16407 (2020), Herbers et al, Opt. Lett. 47, 5441 (2022)





Hopefully early in 2023:

- full transportable lattice clock with
- low-10<sup>-18</sup> uncertainty and
- mid 10<sup>-16</sup> instability (in 1 s)

Application in chronometric levelling centimetre height resolution



and ICON network

SFB 1464



### In conclusion:



- cryogenic lab clock (Sr3) cooling in homogeneous environment low 10<sup>-18</sup> uncertainty
- transportable clock (Sr2 & Sr4) new insights in old data clock laser with 10<sup>-16</sup> instability single-beam MOT + cryo-environment









Physikalisch-Technische Bundesanstalt 
Braunschweig and Berlin

Amated by the European Union's Marian 2020

research and innovation programme and the EMPIK Part opening States