

Liberté Égalité Fraternité

THE FRENCH AEROSPACE LAB

www.onera.fr

MICROSCOPE: Final Results of the Test of the Equivalence Principle

In memoriam of Pierre Touboul (PI of MICROSCOPE) 1958-2021

Manuel RODRIGUES On behalf of MICROSCOPE team

ACES Workshop - October 2022

MICROSCOPE LONG PATH TO THE FINAL RESULT

- Objective : EP test at 10⁻¹⁵ sensitivity,
- Project started in 2000,

- S/c integration : 2014 2016,
- S/c launched in 2016,
- in orbit operations stopped in 2018.

MICROSCOPE PRINCIPLE

MICROSCOPE : a test of the Equivalence Principle in space

Performance of the satellite and T-SAGE

- Linear acceleration controlled at 3x10⁻¹³ m/s²
- Angular motion controlled by hybridizing the star sensor and the accelerometer : better than 3 × 10⁻¹⁰ rad/s
- T-SAGE: reference accelerometer for the DFACS & scientific instrument
 - At the heart of the satellite and the data process
 - Instantaneous resolution: 10⁻¹¹ms⁻²Hz^{-1/2}
 - Integrated accuracy over the scientific selected duration: 8.7x10⁻¹⁵m/s²

The measurement equation

ACES – PARIS – October 2022

First results in 2017 and 2019 based on 7% of available data

	SL	JEP <u>dateDebut</u>	-	nomFiche	▼ Num Orb	Environnement	🔻 crit	. 🔻 <u>duree</u>	🔻 etat 🔻	GazZp	GazZm	Capacite	capacite			
		T13:59:55.846867			4321	NO_ECLIPSE_NO_LU	JNE	2 1.0129 5	i E	0.7	1.1		_			
	206	2017-02-13T15:40:18.833216	i	CAL_K1dxDFIS1_01_S	SUEP 4322	NO_ECLIPSE_NO_LU	JNE	2 5.07000) E	4	3.7	\mathcal{S} –	-1	+	(stat)	$+ 9(syst) \times 10^{-15}$
	207	2017-02-14T00:02:44.983178			4327	NO_ECLIPSE_NO_LU	JNE	2 1.0129 5	5 E	0.5	0.6	0 –		<u> </u>	July	$- \int (3y_3 v) \int 10$
	208	2017-02-14T01:43:07.970959	1	CAL_K1dxDFIS2_01_S	SUEP 4328	NO_ECLIPSE_NO_LU	JNE	2 5.07000) E	2.9	3.3	0379.4	0014.5			
	209	2017-02-14T10:05:34.128091			4333	NO_ECLIPSE_NO_LU	JNE	2 3.0793 9) Е	10	9.3	6509.7	6604.9			
	210	2017-02-14T15:10:44.141758		EPR_V3DFIS2_01_S	UEP 4337	NO_ECLIPSE_NO_L					151.3	6392.6	6453.3			
	211	2017-02-18T01:45:43.539435			4387	NO_ECLIPSE_NO_L	Fro	m least	SOU	are fit	4.2	6386.9	6448.7		Over 120	orbits
	212	2017-02-18T04:15:53.554441		EPR_V3DFIS2_01_S	UEP 4388	NO_ECLIPSE_NO_L					235.1	6123.1	6213.3			010103
	213	2017-02-23T09:55:00.000000			4464	NO_ECLIPSE_NO_LU	JNE	0 0.00000) E	0	0	6123.1	6213.3		 Statist 	ical noise integrated
_	214	2017-02-23T09:55:00.000000		T	'SNA 4464	NO_ECLIPSE_NO_LU	JNE	0 61.8063	9 E		3.3	6122.9	6209.7	Rep		
	215	2017-02-27T16:00:00.028541			4526	NO_ECLIPSE_NO_LU	JNE	2 1.0129 5	5 E	1.3	1.1	6121.7	6207.8		over 1	20 orbits
	216	2017-02-27T17:40:23.014532		CAL_K1dxDFIS2_01_S	SUEP 4527	NO_ECLIPSE_NO_LU	JNE	2 5.07000) E	4.9	8.3	6116.9	6199.3		. Suctor	notion - SII tomporatura
	217	2017-02-28T02:02:49.160909	l		4532	NO_ECUPSE_NO_LL	INE	2 3.07939) <u> </u>	10.4	1	6106.4	6187.8	_	• Syster	natics = 50 temperature
	218	2017-02-28T07:07:59.169132		EPR_V3DFIS2_01_S	UEP 4535	NO_ECLIPSE_NO_LU	JNE	2 120.0000)0 E	384.8	405.8	5721	5781.7		nrohe	noise integrated over
	219	2017-03-08T13:19:57.511429			4655	NO_ECLIPSE_NO_LU	JNE	2 2.5770 3	B E	3.7	4.9	5716.8	5776.4		hinne	noise integrated over
_	220	2017-03-08T17:35:20.494387	·	CAL_tetadZDFIS2_01_S	UEP 4658	NO_ECLIPSE_NO_LU	JNE	2 5.07000) E	3.9	7.9	3712.9	5768.3		120 or	bits (15uK @ f)

Phys. Rev. Letts. 119 231101 (2017) : No evidence of violation > 1,9 × 10⁻¹⁴

667	2017-03-03113.37.33.703334	CAL_UCITATIONISZ_01_30EF	4070	NO_LCLIPSE_NO_LONE	4	3.07000	-	11.5	13.7	3052.0	5,00	
225	2017-03-09T22:20:01.933724		4675	NO_ECLIPSE_NO_LUNE	2	1.18366	E	0.4	1.6	5691.9	5735.5	
226	2017-03-10T00:17:19.958477	CAL_K21xx_02_SUEP	4676	NO_ECLIPSE_NO_LUNE	2	5.07000	E	3.3	7.3	5688.3	5728.3	N
			1001		-		-	•	•	F 600 0	E 700 0	

ONERA

THE FRENCH AEROSPACE LAB

RÉPUBLIQUE FRANCAISE Liberté Égalité Frateraité

- re
- 90% of systematics come from upper bound limit on temperature variations

	DEE	BT14:22:59.978006		3944	NO_ECLIPSE_NO_LUNE	1	1.01295	E	0.9	2	2		$\Lambda(atat) \perp \Omega(auat) \mid \sqrt{10-1}$
50	KEF	BT16:03:22.968294	CAL_K1dxDFIS2_01_SUREF	3945	NO_ECLIPSE_NO_LUNE	1	5.07000	E	4.7			十4 工 4(2	$4(S(U)) \pm O(SYS(J) \times 10)$
) 1/3	2017-01-	-19T00:25:49.137973		3950	NO_ECLIPSE_NO_LUNE	1	3.07939	E	2.5				
i 174	2017-01	-19T05:30:59.159261	EPR_V2DFIS2_01_SUREF	3953	NO_ECLIPSE_NO_LUNE	1	120.00000	E	81.1	67.5	6720	6750.3	Over 62 erhite
175	2017-01	-27T11:42:57.925815		4073	NO_ECLIPSE_NO_LUNE	1	1.51531	E	1	0.6	6719	6749.6	
176	2017-01	-27T14:13:07.942964	EPR_V2DFIS2_01_SUREF	4074	NO_ECLIPSE_NO_LUNE	1	82.00000	E	56	48.4	6662.9	6701	Statistical noise integrated
177	2017-02-	-02T05:39:19.100109		4156	NO_ECLIPSE_NO_LUNE	1	2.57703	E	1.8	2	6661	6699	
) 178	2017-02-	-02T09:54:42.094912	CAL_tetadZDFIS2_01_SUREF	4159	NO_ECLIPSE_NO_LUNE	1	5.07000	E	3.1	2.8	6657.8	6696.2	 Systematics evaluated with
179	2017-02-	-02T18:17:08.262799		4164	NO_ECLIPSE_NO_LUNE	1	1.01295	E	0.6	0.7	6657.2	6695.5	
180	2017-02-	-02T19:57:31.253445	CAL_tetadYDFIS2_01_SUREF	4165	NO_ECLIPSE_NO_LUNE	1	5.07000	E	2.6	3.1	6654.6	6692.4	temperature measurements
3				4170	NO_ECLIPSE_NO_LUNE	1	1.18063	E	3.9	3.6	6650.5	6688.3	and avaluation of concitivity
	00	Val 26 M	22 Oct 2010 F	4171	NO_ECLIPSE_NO_LUNE	1	5.07000	E	13.2	13.5	6637.1	6674.5	and evaluation of sensitivity
	QG.	. VOI. JU.NZZ UCI. ZUI9		4176	NO_ECLIPSE_NO_LUNE	1	1.18365	E	0.4	0.6	6636.6	6673.8	
5 184	2017-02-	-03110:30:41.570425	CAL_KZIXX_UZ_SUKEF	4178	NO_ECLIPSE_NO_LUNE	1	10.00000	E	5.1	5.3	6631.4	6668.5	

-15

Improvements performed since 2017

- More than 2500 orbits of science data have been cumulated
- Analysis of systematics:
 - Thermal analysis thanks to more than dedicated 600 orbits
 - Satellite cracking led to glitches in data and to a necessary new reprocessing of all the mission
 - Test with fake signals to asses new reprocessing procedure

Systematic error analysis of thermal variation effects on the bias at f_{EP}

Dedicated sessions performed :

- To evaluate the measurement sensitivity to temperature
- To demonstrate that the main sensitivity is due to Earth's albedo arriving on FEEU radiator
- AND thus to evaluate the thermal filtering of this process : $\frac{\delta T_{SU}}{\delta T_{FEEU}}$ and $\frac{\delta T_{FEEU}}{\delta T_{RAD}}$

Systematic errors due to thermal variations on SUEP :

- SU Temperature variations at $f_{EP} < 0.1 \mu K$
- Systematic acceleration < 9.3×10^{-15} ms⁻²
- Reduction by a factor 7 with respect to PRL2017

MICROSCOPE systematic error analysis, Rodrigues et al, CQG 2022 Vol.39 N. 20

Glitches due to satellite cracking

Satellite cracking:

- Transient << 1s seen as a damped pulse because of accelerometer transfer functions
- Transients have a periodic pattern @f_{EP} !!!
- Performance killer

Data Process:

- Detection along X, Y, Z of glitches > 4.5 σ
- Data masked with "0" in [T_{glitch}-5sec;T_{glitch}+10sec]
- Iterative method to estimate and to reconstruct the missing signal (M-ECM) in the masked data (with the best estimation of noise) https://doi.org/10.1103/PhysRevD.93.122007

=> Process validated on a fake violation signal of <u>3.4x10⁻¹⁵ and 34x10⁻¹⁵ added to the real data</u>

Systematic error analysis

Temperature variations : the higher sensitivity of the instrument than expected is the major limitation

Non linearity:

- The differential quadratic parameter (K_{2d,xx}) is calibrated before each session
- The common quadratic parameter (K_{2c,xx}) is not calibrated and because of large variations of K_{2dxx} => K_{2c,xx} fixed to the max estimated ground value

Error in the final result:

$$\sqrt{\sum_k (\Gamma_k^{(d)})^2}$$

$$\Gamma_k^{(d)} = \frac{1}{\sum_l \frac{1}{\sigma_l^2}} \sum_l \frac{1}{\sigma_l^2} \Gamma_{k,l}^{(d)}$$

	Systematic error sources	${f SUEP} { m ms^{-2}}$	$\frac{\rm SUREF}{\rm ms^{-2}}$	$\frac{\rm Specification}{\rm ms^{-2}}$
$\Gamma_1^{(d)}$	Earth gravity gradients	0.0×10^{-15}	0.0×10^{-15}	0.0×10^{-15}
$\overline{\Gamma_2^{(d)}}$	Instrument gravity	0.0×10^{-15}	0.0×10^{-15}	0.2×10^{-15}
$\overline{\Gamma_3^{(d)}}$	Satellite gravity gradients	0.1×10^{-15}	0.1×10^{-15}	0.3×10^{-15}
$\Gamma_4^{(d)}$	Angular motions	0.1×10^{-15}	0.1×10^{-15}	1.1×10^{-15}
$\Gamma_5^{(d)}$	Instrument parameters	0.2×10^{-15}	0.1×10^{-15}	0.8×10^{-15}
$\Gamma_6^{(d)}$	Temperature variations	9.3×10^{-15}	17.9×10^{-15}	0.9×10^{-15}
$\Gamma_7^{(d)}$	Drag-Free residuals	0.0×10^{-15}	0.0×10^{-15}	0.5×10^{-15}
$\overline{\Gamma_8^{(d)}}$	Magnetic sensitivity	0.0×10^{-15}	0.0×10^{-15}	0.4×10^{-15}
$\Gamma_9^{(d)}$	Non linearity	6.0×10^{-15}	3.1×10^{-15}	0.8×10^{-15}
Tot	al quadratic sum $(m s^{-2})$	11.5×10^{-15}	18.3×10^{-15}	
Tot	tal systematic errors for t Quadratic sum of errors	he Eötvös $\delta \in 1.5 \times 10^{-15}$	estimation wit 2.3×10^{-15}	th $g = 7.9 \mathrm{m/s^2}$

Table 15: Budget of systematic error analysis compared to specification analysis [5].

Einstein's GR theory has resisted to the more accurate experiment ever realised No violation > 2.7x10⁻¹⁵

- SUEP: $\delta(Ti, Pt) = [-1.5 \pm 2.3(stat) \pm 1.5(sys)] \times 10^{-15} \sim 2.7 \times 10^{-15}$
- SUREF: $\delta(Pt, Pt) = [0.0 \pm 1.1(stat) \pm 2.3(sys)] \times 10^{-15} \sim 2.5 \times 10^{-15}$
- Physical Review Letters (American Physics Society): Phys. Rev. Lett. 129, 121102
- Classical Quantum Gravity (IOP Publishing): An special edition of 11 papers, CQG Vol 39, N.20, 2022
- DATA AVAILABLE ON : https://cmsm-ds.onera.fr/

A jump in accuracy

This outstanding accuracy results from a long and hard collaborative work

- Experts in very different technology and scientific areas
 - Performance Group (CNES, ONERA, OCA, ZARM)
 - Science Working Group (IHES, Imp. Col., Delf Un., ZARM, DLR, ENS, LKB, IGN)
 - > Numerous of out of project experts in CNES, ONERA et sub-contractors
- It is the first experiment in space dedicated to EP test: one shot success
 !! And 100 better than any other ground experiment since 4 century
- There is a lot of reasons to violated the EP => testing with better accuracy is still a major topic in Physics
- The experience return of MICROSCOPE lets imagine even more accurate experiment in space in the future.

