ACES Science

Laboratoire Kastler Brossel Physique quantique et applications

SORBONNE UNIVERSITÉ

C. Salomon salomon@lkb.ens.fr

Alexander von Humboldt Stiftung/Foundation

ACES workshop, ENS Paris, October 20-21, 2022

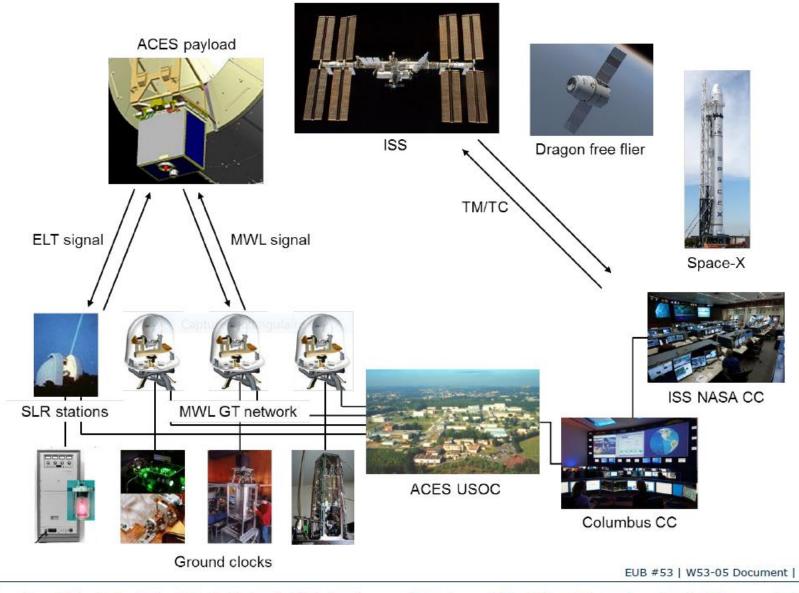
ACES Science objectives review

Benefits-Cost Analysis Panel study, January-April 2021

Fritz Riehle, Luigi Cacciapuoti, Luis Mendes, Giorgio Santarelli, Christophe Salomon

ACES Science Review

- Scientific review panel appointed in February 2021 to re-assess the ACES scientific relevance in light of the recent advances in clock-based research
- · The panel thoroughly examined:
 - Scientific relevance
 - Technology maturity
 - Degraded mission scenarios
 - Strategic importance
 - International cooperation


Capture rectangulaire
The scientific objective has preserved its validity and interest
The scientific objective has been surpassed by recent results
New scientific investigation

ESA UNCLASSIFIED - For Official Use

EUB #53 | W53-05 Document | L. Cacciapuoti | 25-26/10/2022 | Slide 4

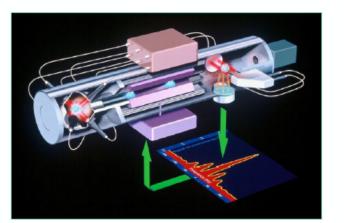
ACES Mission Concept

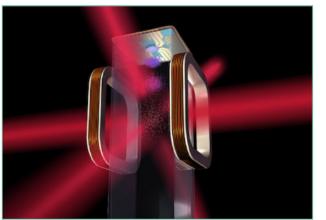

EUB #53 | W53-05 Document | L. Cacciapuoti | 25-26/10/2022 | Slide 2

→ THE EUROPEAN SPACE AGENCY

ESA UNCLASSIFIED - For Official Use

ACES MWL network




ESA UNCLASSIFIED - For Official Use

L. Cacciapuoti | ACES Cost to Benefit Analysis | 08/02/2021 | Slide 5

Cold Atoms in Space

Credits: NASA/JPL

- PHARAO is primary frequency standard using laser cooled Cs atoms
- PHARAO operation requires tuning of the cold atom sample parameters under weightlessness conditions: atoms number, temperature, launch speed, preparation/interrogation/detection
- To that purpose, a series of experiments will be performed with the objective of optimizing the clock operation (stability and accuracy)
- The DLR sounding rocket experiment (2018) and the NASA Cold Atom Lab (2020) have performed several experiments using laser cooled and magnetically trapped atoms (BEC)
- The Chinese experiment CACES (2018) has measured Ramsey fringes with cold Rb atoms on orbit
- They are important milestones towards the use of cold atoms in space, however...

ACES remains the only mission using laser cooled atoms for high precision time and

frequency measurements in space

ESA UNCLASSIFIED - For Official Use

EUB #53 | W53-05 Document | L. Cacciapuoti | 25-26/10/2022 | Slide 6

PHARAO FM

Flight model tested and delivered to ESA in July 2014

UNCLASSIFIED - For Official Use

Cold atom cesium

clock designed for

L. Cacciapuoti | ACES Cost to Benefit Analysis | 08/02/2021 | Slide 36

Clocks Validation in Space

	ACES Mission Objectives	ACES per	formances	Scientific background and recent result			
	Test of a new generation of space clocks						
\checkmark	Cold atoms in microgravity	Study of cold atom microgravity	physics in	Key to develop atomic sensors for high- precision measurements in space. The NASA CAL experiment on-board the ISS has performed the first studies, but ACES remains the only mission using them for metrological applications.			
\checkmark	Validation of the cold atom clock PHARAO	Freq. stability	1·10 ⁻¹³ @ 1 s	PHARAO is the most stable and accurate			
			3·10 ⁻¹⁶ @ 1d	clock ever developed for space. Optical clocks on the ground have reached			
			1·10 ⁻¹⁶ @ 10d	the 1.10 ⁻¹⁸ stability and accuracy level thus enriching the ACES science output via			
		Freq. accuracy	1-2·10 ⁻¹⁶	ground-to-ground clock comparisons.			
\checkmark	Validation of the active H- maser SHM	Freq. stability	4.1·10 ⁻¹⁵ @ 100 s	Galileo PHM stability is about a factor 10			
			2.1·10 ⁻¹⁵ @ 10 ³ s	worse than SHM. Active H-masers for space with comparable performance are available			
			1.5·10 ⁻¹⁵ @ 10 ⁴ s	at Vremya (RU). ACES is therefore placing European industry (SpT) at the forefront of			
		Freq. accuracy	Not applicable	active H-masers for space.			

ESA UNCLASSIFIED - For Official Use

EUB #53 | W53-05 Document | L. Cacciapuoti | 25-26/10/2022 | Slide 7

+

+

Time and Frequency Links Validation in Space

	ACES Mission Objectives		ACES performances				Scientific background and recent results	
	Test of a new generation of time and frequency links for space							
\checkmark	Validation of MWL and ELT	Space-to-ground time transfer stability				sfer	MWL and ELT noise floor is significantly better than specified. Such performance	
		τ	M۱	NL	E	LT	enable space-to-ground comparisons to better than 1.10 ⁻¹⁷ @ 1 d. Ground-to-ground	
		300 s	0.3	b ps	4	ps	time transfer stability reaches 1.10 ⁻¹⁷ after 1	< F
		1 d	7	ps	4	ps	d in common view (CV) and 3-4 d in	Å
		10 d	23	ps	7	ps	intercontinental non-CV comparisons. MWL remains the state-of-the-art for free-	
\checkmark	Comparison of ground clocks	Ground-to-ground time transfer stability				sfer	space microwave T&F transfer. ELT has similar performance on the long term.	
		τ	M۱	NL	ELT		Coherent optical links (through fiber and	
			CV	nCV	CV	nCV	free space) have demonstrated stabilities at the 1.10 ⁻¹⁹ in less than an hour.	
		300 s	1 ps	-	6 ps	-	Fiber links will provide additional methods	-
		2700 s	-	2 ps	-	6 ps	for the characterization of MWL and ELT.	1

See talk by A. Amy-Klein And by Y. Prochazka for ELT

ESA UNCLASSIFIED - For Official Use

EUB #53 | W53-05 Document | L. C

Fundamental Physics Tests

	ACES Mission Objectives	ACES performances	Scientific background and recent results		
		Tokyo skytree expt			
1	Measurement of the gravitational red shift	Absolute measurement of the gravitational red-shift at a precision < $50 \cdot 10^{-6}$ after 300 s and < $2 \cdot 10^{-6}$ after 10 days of integration time.	ACES will yield an improvement of a factor 70 over the GPA experiment and a factor 10 to 20 over recent tests involving Galileo 5 and 6 satellites. P. Delva et al. PRL '18	Best test near the Earth surface at 9 10 ⁻⁵ See talk by M.Takamoto	
\checkmark	Search for time drifts of fundamental constants	Time variations of the fine structure constant α at a precision level of $\alpha^{-1} \cdot d\alpha / dt < 1 \cdot 10^{-17}$ yr ⁻¹ down to $3 \cdot 10^{-18}$ yr ⁻¹ in case of a mission duration of 3 years.	The drift of the fine structure constant has been constrained to $1 \cdot 10^{-18}$ yr $^{-1}$ in the 171 Yb ⁺ experiment at PTB. ACES will perform comparisons of clocks based on different atomic elements on a worldwide scale thus constraining the time variations of all three fundamental physical constants (α , m_e/Λ_{QCD} and m_q/Λ_{QCD}).	Talk by C. Lisdat	
X	Search for violations of special relativity	Search for anisotropies of the speed of light at the level $\delta c / c < 10^{-10}$.	ACES results will improve present limits on the RMS parameter α based on GPS satellites by one order magnitude. Best limits today are reaching $\delta c / c < 2.6 \cdot 10^{-11}$, a factor 4 better than the ACES results.	related Talk by T. Mehlstaubler	

+

ESA UNCLASSIFIED - For Official Use

EUB #53 | W53-05 Document | L. Cacciapuoti | 25-26/10/2022 | Slide 16

Fundamental Physics Tests

	ACES Mission Objectives	ACES performances	Scientific background and recent results				
	Fundamental physics tests						
(New)	Dark matter search with atomic clocks	Establish bounds on topological dark matter models based on the comparisons of clocks in the ACES network. See talk by A. Derevianko	The ACES network can ensure comparisons of atomic clocks based on different atomic transitions down to $1 \cdot 10^{-17}$. Limits on variations for each of the three fundamental constants can be established thus testing different terms in the model Lagrangian and imposing limits on the three energy scales Λ_{α} , Λ_{e} , and Λ_{q} . Clock comparisons can be performed continuously on 20 d intervals thanks to the ACES MWL thus extending the analysis on the interval T between encounters by one order of magnitude.				

ESA UNCLASSIFIED - For Official Use

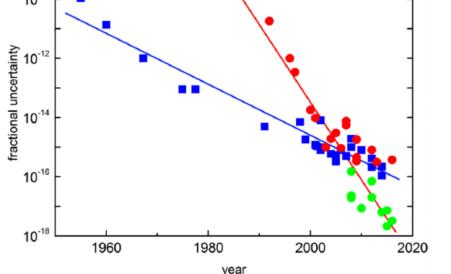
EUB #53 | W53-05 Document | L. Cacciapuoti | 25-26/10/2022 | Slide 17

*

Future Redefinition of the Second – New Application

10⁻¹⁰

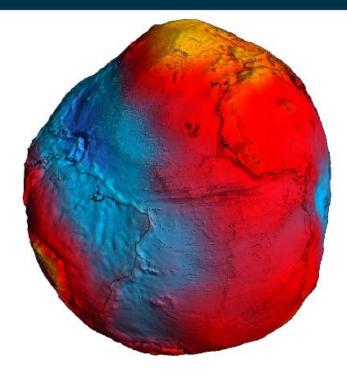
Metrologia 55, 188 (2018)


→ THE EUROPEAN SPACE AGENCY

ACES with its advanced microwave technology (MWL) is a necessary demonstrator that the new definition can be put into action immediately; ELT will then be a precursor for the dissemination of an optical timescale

NCLASSIFIED - For Official Use

EUB #53 | W53-05 Document | L. Cacciapuoti | 25-26/10/2022 | Slide 12


- Optical clocks have reached an accuracy two orders of magnitude better than the best Cs microwave clocks today used to realize the base unit second in the SI
- This asks for a new definition of the SI second based on an optical transition
- ACES, with its capability of comparing optical clocks on ground across four continents, will be essential to test a new infrastructure for the operational realization of the optical SI second

Relativistic Geodesy

- Relativistic geodesy: mapping of the Earth gravitational potential based on the precision measurement of the red-shift between clocks at two different locations
- ACES will perform intercontinental comparisons of optical clocks at the 10⁻¹⁷ level after 4 days of integration time, measuring the local height of the geoid at the 10 cm level

The global coverage offered by ACES will complement the results of the CHAMP, GRACE, and GOCE missions

ESA UNCLASSIFIED - For Official Use

EUB #53 | W53-05 Document | L. Cacciapuoti | 25-26/10/2022 | Slide 19

Conclusion

- Since 1997, ACES has successfully passed numerous scientific reviews with outstanding evaluations
- This group has re-evaluated the ACES science objectives in view of the recent mission context and taking into account the fast progress in optical clocks and fiber links
- Science objectives:
 - Test of the red shift with PHARAO clock remains an outstanding objective.
 - Special relativity test has become obsolete,
 - ... but new and improved science objectives have emerged:
 - The search for dark matter with the ACES worldwide network of clocks
 - Connecting optical clocks over 4 continents, ACES will bring its share to the redefinition of the SI second
 - Geodesy with optical clocks connected to the ACES network is a breakthrough
 - Secondary objectives remain important as well
- The scientific importance of ACES both for space-based research and its strategic role in the worldwide context for international cooperation, knowhow development at European industry, and technology development, is confirmed to be outstanding

ESA UNCLASSIFIED - For Official Use

EUB #53 | W53-05 Document | L. Cacciapuoti | 25-26/10/2022 | Slide 22