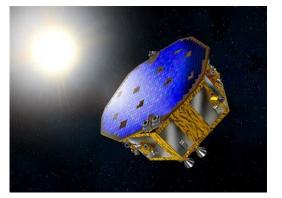
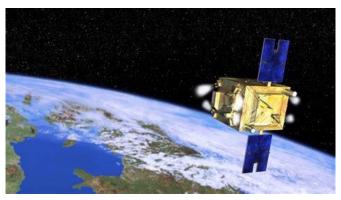

STE-QUEST M7

Core team: A. Bassi(I), K. Bongs(UK), P. Bouyer(F), C. Braxmaier(D), O. Buchmüller(UK), M-L. Chiofalo(I), J. Ellis(UK), N. Gaaloul(D), A. Hees(F), P. Jetzer(CH), S. Lecomte(CH), G. Métris(F), M. Nofrarias (E), E. Rasel(D), T. Schuldt(D), C. Sopuerta(E), G. Tino(I), W. von Klitzing(GR), L. Wörner(D), P. Wolf (F), N. Yu(USA), M. Zelan(S)

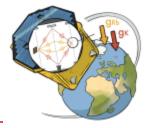

ACES-Workshop Paris, 20/10/2022

Mission Concept

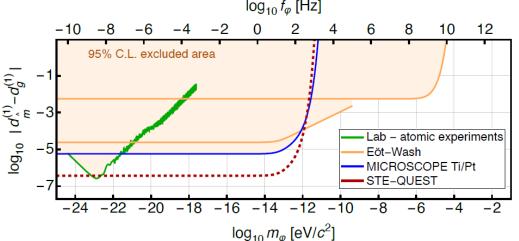


Space-Time Explorer and Quantum Equivalence Space Test

- Test the equivalence principle (universality of free fall and Lorentz invariance) using ⁴¹Rb and ⁸⁷K atoms in quantum superpositions.
- Improve by >2 orders of magnitude on final (14/09/2022) Microscope results
- Other science objectives are searches for dark matter and tests of Quantum mechanics.
- SSO at 1400 km (1000-1400 km pending phase A optimization)
- Inertial attitude, drag free, cold-gas control (GAIA, Microscope, and LISA-PF heritage)
- ➢ ⁴¹K-⁸⁷Rb double atom interferometer using BECs (ICE, QUANTUS, MAIUS, (BEC)CAL)


LPF: 2015-2017

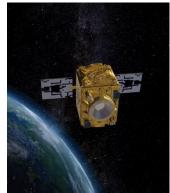
MICROSCOPE : 2016-2018



Expected scientific outcome from STE-QUEST

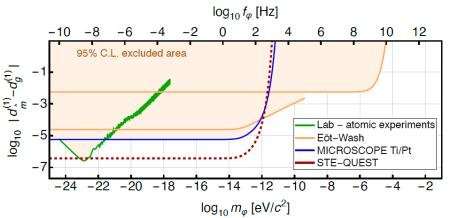
SYstèmes de Référence Temps-Espace

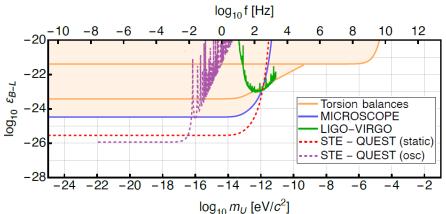
- Over 2 orders of magnitude improvement in test of the Equivalence Principle: pushing the limit of fundamental physics into a totally unexplored region with possible groundbreaking discovery or stringent constraints for theoretical scenarios
- Extend the parameters search for various Dark Matter candidates by 1-2 orders of magnitude: scalar Ultra Light Dark matter, new U(1) gauge boson, ...



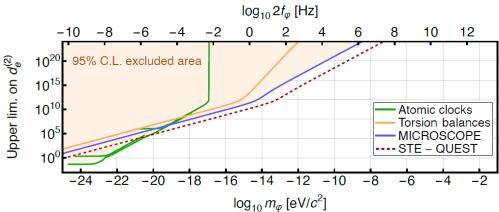
- Extend the parameter search for a violation of Lorentz or CPT symmetry by 3 orders of magnitude (Standard Model Extension formalism)
- Test the foundation of Quantum Mechanics: the validity and the breakdown of the superposition principle. Expected improvement by up to 4 orders of magnitude.

The Universality of Free Fall is currently tested at the level of 10⁻¹⁵

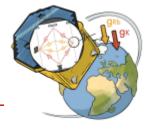

$$\eta_{AB} = 2 \, \frac{a_A - a_B}{a_A + a_B}$$


Class	Elements	η	Year	Comments	
	Be - Ti	2×10^{-13}	2008	Torsion balance	
Classical	Pt - Ti	1×10^{-14}	2017	MICROSCOPE first results	
	Pt - Ti	2.7×10^{-15}	2022	MICROSCOPE full data	
	^{133}Cs - CC	7×10^{-9}	2001	Atom Interferometry	
Hybrid	87 Rb - CC	7×10^{-9}	2010	and macroscopic corner cube (CC)	
Quantum	³⁹ K - ⁸⁷ Rb	$3 imes 10^{-7}$	2020	different elements	
	⁸⁷ Sr - ⁸⁸ Sr	2×10^{-7}	2014	same element, fermion vs. boson	
	⁸⁵ Rb - ⁸⁷ Rb	$3 imes 10^{-8}$	2015	same element, different isotopes	
	⁸⁵ Rb - ⁸⁷ Rb	3.8×10^{-12}	2020	10 m drop tower	
	41 K - 87 Rb	(10^{-17})	2037	STE-QUEST	
Antimatter	$\overline{\mathrm{H}}$ - H	(10^{-2})	2023 +	under construction at CERN	

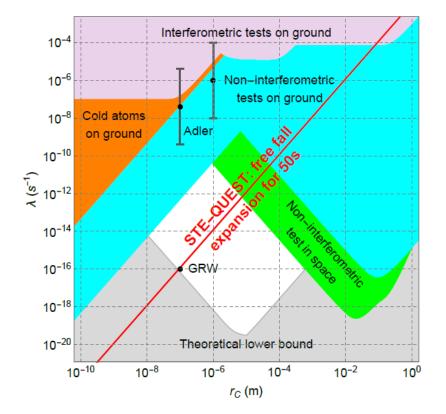
Over 2 orders of magnitude improvement with STE-QUEST

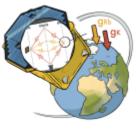

Search for Dark Matter

Scalar DM, quadratic coupling to photons



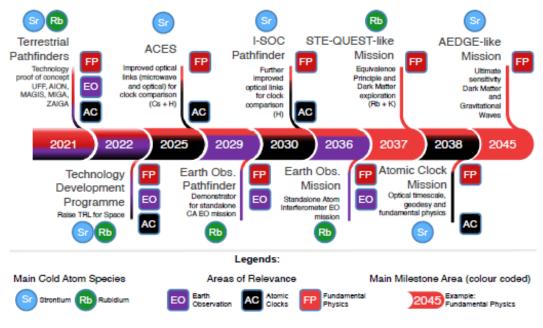
Scalar DM, linear coupling to quarks


Spin 1 DM, (B-L) coupling


Test of Quantum Mechanics

- The collapse mechanism of quantum mechanical superpositions remains an unsolved fundamental riddle.
- Continuous collapse models modify the Schrödinger dynamics by adding (parametrized) collapse terms. E.g. CSL or DP (Diosi-Penrose).
- STE-QUEST measures the evolution of a free QM wave-packet over long evolution times (≥ 50 s), allowing a sensitive detection of any deviation from standard QM-evolution.

Improvement on present knowledge by ~2 orders of magnitude. And potential for a major discovery!



Scientific and technological context


- Scientific priority in numerous evaluations (ESA-FPRAT, PSWG, CNES, EU, ..)
- Heritage from M3 (phase A) and M4 STE-QUEST proposals
- Integral part of the recent community roadmap for cold atoms in space authored by 250 scientists world wide [arXiv:2201.07789].
- Space-quantum heritage from PHARAO, QUANTUS, MAIUS, ICE, (BEC)CAL, CARIOQA-PMP
- Mission heritage from Microscope and LISA-Pathfinder
- Europe, and France in particular, are leaders in fundamental physics in space (Microscope, LISA-PF, ACES/PHARAO, LISA) => consolidate that position

Community Proposal for an ESA Road-Map for Cold Atoms in Space

M7 mission summary

	· · · · · · · · · · · · · · · · · · ·				
PAYLOAD					
Dual Atom Interferometer	⁸⁷ Rb vs ⁴¹ K differential acceleration (Δa) measurement with $\sqrt{S_a(f)} \leq 4.8 \times$				
Dual Atom Interferometer	$10^{-13} \mathrm{m/s^2/\sqrt{Hz}}$. Systematics at signal frequency/phase $\leq 6.6 \times 10^{-17} \mathrm{m/s^2}$.				
GNSS receiver	Dual-band receiver with modest performance requirements (≈ 200 m).				
MISSION PROFILE					
Orbit SSO circular orbit, 1400 km altitude.					
Launcher	Direct orbit injection with VEGA-C from Kourou. Launch window available				
Launcher	all year.				
Mission Duration	uration 3 yrs with 80% science availability, including 6 months commissioning.				
End of life	Solid fuel propulsion for controlled re-entry manoeuvre.				
SPACECRAFT					
S/C design	Cylindrical with body mounted solar panels. STE-QUEST M3/M4 and LISA-				
S/C design	Pathfinder (LPF) heritage.				
	Drag-free and attitude control using cold-gas microthrusters/ inertial_mea-				
DFACS	surement unit/ star trackers. Req.: $\sqrt{S_a(f)} \leq 4.0 \times 10^{-10} \mathrm{m/s^2/\sqrt{Hz}}$ and				
DFACS	$\sqrt{S_{\dot{\Omega}}(f)} \leq 3.2 \times 10^{-7} \mathrm{rad/s^2/\sqrt{Hz}}$ (see Tab. 3.5). MICROSCOPE and LPF				
	heritage.				
Mass	1187 kg wet mass, all margins included.				
Power	1235 W average consumption, all margins included.				
Communications	S/X band up/downlinks. Req.: ≤ 110 kbps science data in downlink.				

Main Instrument: ATI

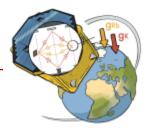
A ...

106

		Atom number N	$2.5 \times 10^{\circ}$
		$k_{\rm eff}$ for Rb	$8\pi/(780 \text{ nm})$
•	Double species Rb-K	$k_{\rm eff}$ for K	$8\pi/(767 \text{ nm})$
	atom interferometer.	Free evolution time T	$25 \mathrm{s}$
٠	Standard 3-pulse	Max. separation Rb	$0.59 \mathrm{~m}$
	•	Max. separation K	$1.27 \mathrm{~m}$
	sequence in double-	Cycle time T_c	$60 \mathrm{s}$
	Raman or double-Bragg	Contrast C	1
	configuration.	Expansion energy	10 pK
•	Atomic shot noise limited.	Expansion velocity $\sigma_{v,Rb}$	$31 \ \mu m/s$
		Expansion velocity $\sigma_{v,K}$	$45 \ \mu m/s$
•	Gravity Gradient	Init. pos. spread σ_r	$500~\mu{ m m}$
	Cancellation (GGC)	Init. diff. position Δr	$1 \ \mu \mathrm{m}$
	implemented [1]	Init. diff. velocity Δv	$0.1 \ \mu m/s$
		Indiv. Velocity (in S/C frame) v	$1 \ \mu { m m/s}$

Table 4: Operational parameters of the ATI.

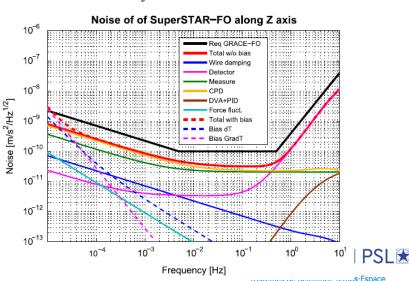
λT


ъ


Improved performance also requires re-evaluation of other systematics, eg. residual satellite rotations and accelerations.

[1] Roura, PRL, 2017; Loriani et al., PRD, 2020.

Payload


Platform requirements

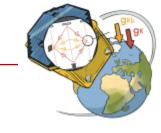

Quantity	Constraint Comment		$\mu SCOPE$	LPF	GRACE- FO
$\sqrt{S_a(f)}$	$\begin{array}{ccc} 4.0 & \times & 10^{-10} \\ \text{m/s}^2/\sqrt{\text{Hz}} & \text{in} \\ [0.01:0.5] \text{ Hz} \end{array}$	From (15) assuming white noise	$OK in (15)^{(1)}$	OK in $(15)^{(1)}$	ОК
$\langle \dot{a} \rangle_{2T}$	$2.5 \times 10^{-13} \text{ m/s}^3 \qquad \begin{array}{l} \langle \dot{a} \rangle_{2T} = \text{average (over 2)} \\ \text{of } \dot{a}, \text{ cf. text after (15)} \end{array}$		$OK^{(2)}$	(OK) ⁽³⁾	$(OK)^{(4)}$
Ω_{orb}	3.3×10^{-7} rad/s $^{(5)}$	Amplitude of component of Ω at orbital frequency cf. Sec. 3.4.6	OK	OK	-
$\sqrt{S_{\dot{\Omega}}(f)}$	3.2×10^{-7} rad/s ² / $\sqrt{\text{Hz}}$ in [0.01:0.5] Hz	From (17) assuming white noise	OK ⁽⁶⁾	OK	-
$\langle \Omega \rangle_{2T}$	$5.4 \times 10^{-7} \text{ rad/s}$	cf. Sec. 3.4.3	OK	OK	-
$\langle \dot{\Omega} \rangle_{2T}$	$1.3 \times 10^{-7} \text{ rad/s}^2$	cf. Sec. 3.4.3	OK	OK	-

Table 9: Requirements on S/C accelerations and attitude. Superscripts in brackets refer to the notes in the text. Note that the $\langle \dots \rangle_{2T}$ constraints apply to variations at frequencies such that $2\pi fT < 1$.

- Heritage from previous missions is OK, but with little margin in some cases.
- But, room for improvement e.g. high freq. servo acting on laser frequency, optimized feed forward strategies,

Management

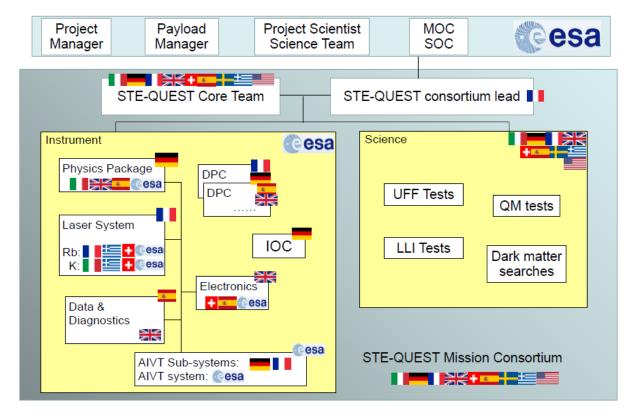


Figure 21: Proposed STE-QUEST top level management structure. MOC: Mission Operation Centre, SOC: Science Operation Center, DPC: Data Processing Center, IOC: Instrument Operation Center, AIVT: Assembly Integration Validation and Testing.

Note: All AIVT (BB, E(Q)M, FM) carried out by responsible entity for system and subsystems (following M4-feedback).

Past and Future

- Initially proposed in M3 (2010) in very different form. Passed first selection => phase A study (2011-2013) with two other candidates. Not selected in final round (mainly TRL problems).
- Re-proposed in M4 (2014). Not selected (mainly financial problem as costcap @ 450 M€).
- Re-proposed in M7 (02/2022):
 - Passed phase-1, 04/2022 (with 9 other M candidates, out of 26).
 - Phase 2 proposal, 07/2022.
 - ESA Q&A audition, 09/2022.
- Selection of 1-3 missions for 3-year phase-A study, 11/2022
- Down selection to 1 mission in 2025/26
- Phase B1/B2/C/D 2026 2036
- Launch around 2037

Cost cap: ESA 550 M€ Payload contributions from member states: ~150 M€

