Ultrastable frequency transfer through the REFIMEVE optical fiber network

E. Cantin, O. Lopez, C. Chardonnet, <u>A. Amy-Klein</u>, *Laboratoire de Physique des Lasers, Université Sorbonne Paris* Nord, CNRS, Villetaneuse, France

M. Tønnes, B. Pointard, M. Mazouth-Laurol, R. Le Targat. M. Abgrall, M. Lours, H. Le Goff, L. Lorini, P.-E. Pottie, *LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Paris, France*

M. Rabault, V. Ménoret, iXblue, Talence, France

N. Quintin, RENATER, Paris, France

C. Clivati, M. Pizzocaro, E. K. Bertacco, S. Condio, G. A. Costanzo, S. Donadello, I. Goti, M. Gozzelino, F. Levi, A. Mura, M. Risaro and D. Calonico, INRIM, Torino, Italy

Optical fiber links enable the accurate and ultra-stable transfer of an optical frequency reference to distant locations connected by optical fibers. They provide unprecedented resolution for clock comparisons and have shown great potential in a wide range of applications such as spectroscopy, fundamental physics, geodesy, search for dark matter or tests of general relativity for example [1]. In France, we have implemented a wide scale fiber network, called REFIMEVE, which is using installed telecom fibers provided mainly by the French academic network of RENATER. It disseminates an ultra-stable and accurate time and frequency signals generated at LNE-SYRTE to partner laboratories at the national scale and to connection points to European National Metrological Institutes. The network is currently composed of five national-scale links and three regional links, for a total of 2×3400 km and it disseminates an accurate frequency signal with a residual transfer uncertainty better than 10⁻¹⁹. It is highly reliable and robust thanks to repeater laser stations installed along the network, which provide both remote control and real-time supervision [2].

REFIMEVE is part of the fiber links enabling the accurate comparison of a wide set of European atomic clocks, which benefits to fundamental metrology and can be applied to chronometric geodesy or search for new physics. With a connection to the Italian Quantum Backbone, it enables recently the first comparison of Italian and French atomic clocks, exploiting four months of quasi-continuous operation of the French and Italian links [3]. REFIMEVE also currently benefits to remote laser control, photonics and high-resolution spectroscopy, among them precision molecular spectroscopy in the mid-infrared using Quantum Cascade Lasers [4].

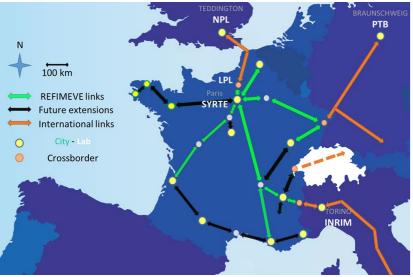


FIG. 1: Map of the REFIMEVE network and its European connection.

References

[1] C. Lisdat et al, Nature Communications 7, 12443, 2016

[2] F. Guillou-Camargo et al, Applied optics 57, 7203 (2018) ; E. Cantin et al, New J. Phys. 23, 053027 (2021) - <u>https://doi.org/10.1088/1367-2630/abe79e</u>

- [3] C Clivati et al, to be published in Phys. Rev. App.
- [4] R. Santagata et al, Optica 6, 411–423 (2019)